Math 549: Differentiable Manifolds I – David Dumas – Fall 2022

Final Exam

Wednesday, December 7

(P1) Consider the vector field $V = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} - 2z \frac{\partial}{\partial z}$ on \mathbb{R}^3 .

- (a) Compute Vf where $f(x, y, z) = x + y^2$
- (b) Compute the Lie bracket $[V, \frac{\partial}{\partial z}]$.
- (c) Compute the flow of V.

(P2) Consider these differential forms on \mathbb{R}^3 :

$$\alpha = dy \wedge dz + z \, dx \wedge dz$$
$$\beta = x \, dy - y \, dx$$

Also, let $\gamma : \mathbb{R} \to \mathbb{R}^3$ be the map $F(t) = (t, t^2, 0)$.

- (a) Compute $\alpha \wedge \beta$.
- (b) Compute $d\alpha$.
- (c) Compute $d\beta$.
- (d) Compute $\gamma^*(\alpha)$.
- (e) Compute $\gamma^*(\beta)$.
- (P3) Suppose M and X are smooth manifolds and that there are three smooth maps

$$A: M \to X,$$

$$B: X \to X,$$

$$C: X \to M$$

such that $F = C \circ B \circ A : M \to M$ is a diffeomorphism. Does this imply that any of the maps *A*, *B*, *C* is an immersion? And does it imply that any of *A*, *B*, *C* is a submersion? Justify your answers.

In addition to any arguments, examples, or justifications you write, please include a table like this one that summarizes your answer

	A	В	C
Must be an immersion?			
Must be a submersion?			

writing "yes" or "no" in each box as appropriate.