
LECTURE 9
CONTEXT MANAGERS

MCS 275 Spring 2021
Emily Dumas

LECTURE 9: CONTEXT MANAGERS
Course bulletins:

Quiz 3 is due Tuesday at Noon.

Project 1 due Friday at 6pm CST.

Project 1 autograder is available.

MOTIVATING EXAMPLE
Here's a common way to deal with file input/output:

fileobj = open("data.txt","w")

fileobj.write(...)

other write operations...

fileobj.close()

MOTIVATING EXAMPLE
Here's a common way to deal with file input/output:

fileobj = open("data.txt","w") # SETUP: Acquire file access

fileobj.write(...)

other write operations...

fileobj.close()

MOTIVATING EXAMPLE
Here's a common way to deal with file input/output:

fileobj = open("data.txt","w") # SETUP: Acquire file access

fileobj.write(...)

other write operations...

fileobj.close() # CLEANUP: Release file access

POSSIBLE BUG
It is easy to forget to close a file, especially when the
work after opening it involves conditionals, loops,
return from a function, possible exceptions, etc.

Moreover, it can be hard to check whether a file is
always closed when no longer in use.

All files are closed when a program exits, but open files
are a limited resource. In long-running programs,
holding on to many open files can be a problem.

Will this function always close the file?
def file_contains_walrus(fn):

 """Return True if "walrus" is a line of file `fn`"""

 fileobj = open(fn,"r")

 for line in fileobj:

 if line.strip() == "walrus":

 fileobj.close()

 return True

 return False

Currently, in CPython (the usual interpreter): Yes.

In CPython, local variables are deleted as soon as a
function returns. Deleting a file object closes the file.

But this isn't a language guarantee!

ANOTHER WAY
Use with block to ensure automatic file closing, and to

be explicit about what part of a program needs the file.

Notice that you can see exactly what part of the
program uses the file.

with open("data.txt","w") as fileobj:

 fileobj.write(...)

 # other write operations...

print("At this point, the file is already closed")

CLEANUP GUARANTEE
A file opened using a with block will be closed as soon

as execution leaves the block, even if an exception is
raised.

RECOMMENDATION
Always open files using with, and make the body as

short as possible.

Think of files like refrigerators: Open them for the
shortest time possible, and don't forget to close them!

CONTEXT MANAGERS
with is not a Python language feature created solely

for files.

Any object that is a context manager can be used.

A context manager is any object that defines special
methods to:

Perform setup (__enter__)

Perform cleanup (__exit__)

PURPOSE OF CONTEXT MANAGERS
Context managers are appropriate when the creation
or use of an object will take control of a resource that
later needs to be released, e.g.

Network connections
Database connections
Locks
Any limited or exclusive access right

CONTEXT MANAGER PROTOCOL
An object is a context manager if it has methods:

__enter__(self): Performs setup; return value

assigned to the name after "as" (if any)
__exit__(self,exc_type,exc,tb): Perform

cleanup. The arguments describe any exception that
happened in the with block that is the reason for the

exit (or None if no exception happened).

BUILT-IN CONTEXT MANAGERS
We've seen that file objects (created by open()) are

context managers.

A threading.Lock is also a context manager; setup

will acquire the lock, and cleanup will release it, e.g.

Note that we use with without as in this case.

L = threading.Lock()

Do things not requiring exclusive access

with L:

 print(shared_dict["name"])

 print(shared_dict["address"])

Back to non-exclusive stuff.

REFERENCES
Lutz discusses context managers in Chapter 34. This is a long chapter covering several
other topics. Look for the heading with/as Context Managers. In the print edition, it
beings on page 1114.

REVISION HISTORY
2021-02-01 Initial publication

