
LECTURE 9
CONTEXT MANAGERS

MCS 275 Spring 2021
Emily Dumas

LECTURE 9: CONTEXT MANAGERS
Course bulletins:

Quiz 3 is due Tuesday at Noon.

Project 1 due Friday at 6pm CST.

Project 1 autograder is available.

MOTIVATING EXAMPLE
Here's a common way to deal with �le input/output:

fileobj = open("data.txt","w")

fileobj.write(...)

other write operations...

fileobj.close()

MOTIVATING EXAMPLE
Here's a common way to deal with �le input/output:

fileobj = open("data.txt","w") # SETUP: Acquire file access

fileobj.write(...)

other write operations...

fileobj.close()

MOTIVATING EXAMPLE
Here's a common way to deal with �le input/output:

fileobj = open("data.txt","w") # SETUP: Acquire file access

fileobj.write(...)

other write operations...

fileobj.close() # CLEANUP: Release file access

POSSIBLE BUG
It is easy to forget to close a �le, especially when the
work after opening it involves conditionals, loops,
return from a function, possible exceptions, etc.

Moreover, it can be hard to check whether a �le is
always closed when no longer in use.

All �les are closed when a program exits, but open �les
are a limited resource. In long-running programs,
holding on to many open �les can be a problem.

Will this function always close the �le?
def file_contains_walrus(fn):

 """Return True if "walrus" is a line of file `fn`"""

 fileobj = open(fn,"r")

 for line in fileobj:

 if line.strip() == "walrus":

 fileobj.close()

 return True

 return False

Currently, in CPython (the usual interpreter): Yes.

In CPython, local variables are deleted as soon as a
function returns. Deleting a �le object closes the �le.

But this isn't a language guarantee!

ANOTHER WAY
Use with block to ensure automatic �le closing, and to

be explicit about what part of a program needs the �le.

Notice that you can see exactly what part of the
program uses the �le.

with open("data.txt","w") as fileobj:

 fileobj.write(...)

 # other write operations...

print("At this point, the file is already closed")

CLEANUP GUARANTEE
A �le opened using a with block will be closed as soon

as execution leaves the block, even if an exception is
raised.

RECOMMENDATION
Always open �les using with, and make the body as

short as possible.

Think of �les like refrigerators: Open them for the
shortest time possible, and don't forget to close them!

CONTEXT MANAGERS
with is not a Python language feature created solely

for �les.

Any object that is a context manager can be used.

A context manager is any object that de�nes special
methods to:

Perform setup (__enter__)

Perform cleanup (__exit__)

PURPOSE OF CONTEXT MANAGERS
Context managers are appropriate when the creation
or use of an object will take control of a resource that
later needs to be released, e.g.

Network connections
Database connections
Locks
Any limited or exclusive access right

CONTEXT MANAGER PROTOCOL
An object is a context manager if it has methods:

__enter__(self): Performs setup; return value

assigned to the name after "as" (if any)
__exit__(self,exc_type,exc,tb): Perform

cleanup. The arguments describe any exception that
happened in the with block that is the reason for the

exit (or None if no exception happened).

BUILT-IN CONTEXT MANAGERS
We've seen that �le objects (created by open()) are

context managers.

A threading.Lock is also a context manager; setup

will acquire the lock, and cleanup will release it, e.g.

Note that we use with without as in this case.

L = threading.Lock()

Do things not requiring exclusive access

with L:

 print(shared_dict["name"])

 print(shared_dict["address"])

Back to non-exclusive stuff.

REFERENCES
Lutz discusses context managers in Chapter 34. This is a long chapter covering several
other topics. Look for the heading with/as Context Managers. In the print edition, it
beings on page 1114.

REVISION HISTORY
2021-02-01 Initial publication

