
LECTURE 8
DECORATORS

MCS 275 Spring 2021
Emily Dumas

LECTURE 8: DECORATORS
Course bulletins:

Project 1 posted. Deadline 6pm CST on Fri Feb 5.

Project 1 autograder opens on Monday.

Quiz 2 solutions and grades posted.

Quiz 3 will be posted Monday at Noon, due Tuesday
at Noon (all times CST).

PLAN
Discuss a Python language feature that allows us to
attach "modi�ers" to functions, called decorators.

This feature is never required, but it sometimes leads to
code that is easier to read and understand.

(Some Python modules, e.g. Flask, are meant to be

used primarily through decorators.)

FUNCTION ARGUMENTS
Functions in Python can accept functions as arguments.

def dotwice(f):

 """Call function f twice"""

 f()

 f()

A better version works with functions that accept
arguments:

def dotwice(f,*args,**kwargs):

 """Call function f twice"""

 f(*args,**kwargs)

 f(*args,**kwargs)

RETURNING FUNCTIONS
Functions in Python can return functions. Often this is
used with a return value that is a de�ned inside the
function body, making a "function factory".

def return_power(n):

 def inner(x): # function inside a function!

 """Raise x to a power"""

 return x**n

 return inner

MODIFYING FUNCTIONS
def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 f(*args,**kwargs)

 return inner

REPLACING FUNCTIONS
In some cases we might want to replace an existing
function with a modi�ed version of it (e.g. as returned
by some other function).

def g(x):

 """Print the argument with a message"""

 print("Function got value",x)

actually, I wanted to always print that message twice!

g = return_twice_doer(g)

DECORATOR SYNTAX
There is a shorter syntax to replace a function with a
modi�ed version.

is equivalent to

The symbol @modifier (or any @name) before a

function de�nition is called a decorator.

@modifier

def fn(x,y):

 """Function body goes here"""

def fn(x,y):

 """Function body goes here"""

fn = modifier(fn)

RETURNING VALUES
Usually, the inner function of a decorator should return
the value of the (last) call to the argument function.

def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 return f(*args,**kwargs)

 return inner

DECORATOR ARGUMENTS
Python allows @decorator(arg1,arg2,...).

is equivalent to

In other words, if a decorator is given arguments, then
the name after @ is expected to be a decorator factory.

@dec(2)

def printsq(x):

 print(x*x)

thisdec = dec(2)

@thisdec

def printsq(x):

 print(x*x)

A FEW BUILT-IN DECORATORS
@functools.lru_cache(100) -- Save arguments

and return values for up to 100 recent calls to a
function; reuse stored return values when possible.

Good for expensive operations.*

@classmethod -- Make a method a class method

(callable from the class itself, gets class as �rst
argument). E.g. for alternate constructors.
@atexit.register -- Ask that this function be

called just before the program exits.

* In Python 3.9+ there is also the simpler functools.cache decorator which stores an

unlimited number of past function calls..

MULTIPLE DECORATORS
Each must be on its own line.

replaces f with dec1(dec2(dec3(f))).

So the decorator closest to the function name acts �rst.

@dec1

@dec2

@dec3

def f(x):

 """Function body goes here"""

REFERENCES
See Lutz, Chapter 39 for a detailed discussion of Python decorators.

See Beazley & Jones, Chapter 9 for several examples of decorators.

ACKNOWLEDGMENT
I reviewed course materials created by Danko Adrovic (UIC MSCS faculty member) while
preparing this lecture.

REVISION HISTORY
2021-01-30 Fix accidental use of Python 3.9 feature (functools.cache)

2021-01-28 Initial publication

