LECTURE 8

DECORATORS

MCS 275 Spring 2021
Emily Dumas

LECTURE 8: DECORATORS
Course bulletins:
e Project 1 posted. Deadline 6pm CST on Fri Feb 5.
e Project 1 autograder opens on Monday.
e Quiz 2 solutions and grades posted.

e Quiz 3 will be posted Monday at Noon, due Tuesday
at Noon (all times CST).

PLAN

Discuss a Python language feature that allows us to
attach "modifiers" to functions, called decorators.

This feature is never required, but it sometimes leads
to code that is easier to read and understand.

(Some Python modules, e.g. F1ask, are meant to be
used primarily through decorators.)

FUNCTION ARGUMENTS

Functions in Python can accept functions as
arguments.

def dotwice (f):
"""Call function f twice"""
£()
£

A better version works with functions that accept
arguments:

def dotwice (f, *args, **kwargs) :
"""Call function £ twice"""
f(*args, **kwargs)
f(*args, **kwargs)

RETURNING FUNCTIONS

Functions in Python can return functions. Often this is
used with a return value that is a defined inside the
function body, making a "function factory".

def return power (n):
def inner(x): # function inside a function!
"""Raise x to a power"""
return x**n
return inner

MODIFYING FUNCTIONS

def return twice doer (f):
"""Return a new function which calls £ twice"""
def inner (*args, **kwargs) :
"""Call a certain function twice"""
f(*args, **kwargs)
f(*args, **kwargs)
return inner

REPLACING FUNCTIONS

In some cases we might want to replace an existing
function with a modified version of it (e.g. as returned
by some other function).

def g (x):
"""Print the argument with a message"""
print ("Function got value", x)

actually, I wanted to always print that message twice!
g = return twice doer (qg)

DECORATOR SYNTAX

There is a shorter syntax to replace a function with a
modified version.

@modifier
def fn(x,vy):
"""Function body goes here"""

IS equivalent to

def fn(x,vy):
"""Function body goes here"""
fn = modifier (fn)

The symbol @modifier (orany @name) before a
function definition is called a decorator.

RETURNING VALUES

Usually, the inner function of a decorator should
return the value of the (last) call to the argument
function.

def return twice doer(f):
"""Return a new function which calls £ twice"""
def inner (*args, **kwargs) :
"""Call a certain function twice"""
f(*args, **kwargs)
return f (*args, **kwargs)
return inner

DECORATOR ARGUMENTS

Python allows @decorator (argl,arg2, ...).

@dec (2)
def printsqg(x):
print (x*x)

IS equivalent to

thisdec = dec(2)
@thisdec

def printsqg(x):
print (x*x)

In other words, if a decorator is given arguments, then
the name after @ is expected to be a decorator factory.

A FEW BUILT-IN DECORATORS

e @functools.lru cache(100) --Save
arguments and return values for up to 100 recent
calls to a function; reuse stored return values when

possible. Good for expensive operations.*

e @classmethod -- Make a method a class method
(callable from the class itself, gets class as first
argument). E.g. for alternate constructors.

e Qatexit.register -- Ask that this function be
called just before the program exits.

*In Python 3.9+ there is also the simpler
functools.cache decorator which stores an
unlimited number of past function calls..

MULTIPLE DECORATORS

Each must be on its own line.

@decl
@dec?
@dec3
def f(x):
"""Function body goes here"""

replaces £ with decl (dec2 (dec3 (f))).

So the decorator closest to the function name acts
first.

REFERENCES

See Lutz, Chapter 39 for a detailed discussion of Python decorators.

See Beazley & Jones, Chapter 9 for several examples of decorators.

ACKNOWLEDGMENT

| reviewed course materials created by Danko Adrovic (UIC MSCS faculty member) while
preparing this lecture.

REVISION HISTORY

2021-01-30 Fix accidental use of Python 3.9 feature (functools.cache)
2021-01-28 Initial publication

