
LECTURE 6
OBJECT-ORIENTED PROGRAMMING

SUBCLASSES AND INHERITANCE II
MCS 275 Spring 2021

Emily Dumas



LECTURE 6: SUBCLASSES AND INHERITANCE II
Course bulletins:

Quiz 2 is due at Noon tomorrow (Tue Jan 26).

Project 1 posted. Deadline 6pm CST on Fri Feb 5.

Project 1 autograder opens on Mon Feb 1.

Quiz 3 and Worksheet 4 will be lighter (so you can
prioritize project work).



PLAN
Finish our robot simulation class hierarchy

Discuss more OOP theory & practice



PLANNED BOT HIERARCHY

PatrolBot walks back and forth.

WanderBot walks about randomly.

DestructBot sits in one place for a while and then

self-destructs.



PLANNED BOT HIERARCHY

PatrolBot walks back and forth.

WanderBot walks about randomly.

DestructBot sits in one place for a while and then

self-destructs.



CLASS ATTRIBUTES
Attributes declared in the class definition, outside of
any method, are class attributes.

Class attributes are shared by every instance of the
class. Often used for constants.

Contrast with the instance attributes we have used
thus far (e.g. self.x = 1 in constructor) which exist

separately for each instance.



FOUR PILLARS OF OOP
Encapsulation - Classes manage their own private,
internal state.

Abstraction - Method calls express intent
(independent of implementation).

Inheritance - Distinct classes can share behavior.

Polymorphism - Code using a class will also work on
its subclasses.



EXTENDING THE SIMULATION
Beyond adding more robot types, how might me
improve or extend the simulation?



EXTENDING THE SIMULATION
Might create a class Arena that manages the list of

bots and the space in which they move. Would have a
single .update() method that updates all bots.

Arena could have a metthod to render itself as a string

for display (or as a PNG, HTML, ...).



EXTENDING THE SIMULATION
If we wanted to add robot interaction or movement
constraints then the Bot class would need a way to

access information about its surroundings.

We might make a parent Arena a required argument to

the Bot constructor.

Bot.update() could call methods of Arena to learn

about other robots, movement limits, etc.

e.g. in Bot.update():

self.arena.bots_visible_from(self.position,self.sight_range)



REFERENCES
I discussed inheritance in , using "Square is a subclass of
Rectangle" as an example in this .

See Lutz, Chapter 31 for more discussion of inheritance.

Lutz, Chapters 26-32 discuss object-oriented programming.

REVISION HISTORY
2021-01-25 Fixed typo
2021-01-23 Initial publication

MCS 260 Fall 2020 Lecture 25
geometric object module

https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture25.html
https://github.com/emilydumas/mcs260fall2020/blob/master/samplecode/geom/geom.py



