
LECTURE 5
OBJECT-ORIENTED

PROGRAMMING
SUBCLASSES AND INHERITANCE

MCS 275 Spring 2021
Emily Dumas

LECTURE 5: SUBCLASSES AND
INHERITANCE

Course bulletins:

Worksheet 2 solutions available.

Quiz 2 to be posted at Noon CST Monday, due at
Noon CST Tuesday.

IMPROVED POINT AND VECTOR
I added new features to our plane module between
lectures. Let's take a tour of the changes:

Point-Point gives displacement Vector
Can multiply Vector by integer or float
abs(Vector) gives length
Point and Vector support equality testing

(There are other features we might want in a real-
world application, but this will suffice for now.)

Photo by (CC-BY-SA)Mike Gogulski

https://commons.wikimedia.org/wiki/File:New_cuyama.jpg

INHERITANCE
It is possible to build a class that is derived from an
existing one, so that the new class inherits all the
methods and behavior of the existing class, but can
add new features, too.

If new class B is derived from existing class A in this
way, we say:

B is a subclass of A (or child of A or inherits from A)
A is a superclass of B (or parent of B)

WHY SUBCLASS?
Some common reasons:

To add custom behavior to an existing class
(e.g. a dict that only allows certain kinds of keys)

To avoid code duplication when multiple classes
share some behavior

To formalize relationships between classes

Subclassing should express an "is-a" relationship. Dog
and Cat might be subclasses of Pet.

PYTHON SUBCLASS SYNTAX
Specify a class name to inherit from in the class
definition:

There is a built-in class object that every class
inherits from, even if you don't specify it explicitly.

class ClassName(SuperClassName):

 """Docstring of the subclass"""

 # ... subclass contents go here ...

CLASS HIERARCHIES

Inheritance patterns are o�en shown in diagrams.
Lines represent inheritance, with the superclass
appearing above the subclass (usually).

LIVE CODING
Let's build a class hierarchy for a simple robot
simulation.

Every type of robot will be a subclass of Bot.

Bot has a position (a Point), boolean attribute
alive, and method update() to advance one time
step.

Subclasses give the robot behavior (e.g. movement).

PLANNED BOT HIERARCHY

PatrolBot walks back and forth.
WanderBot walks about randomly.
DestructBot sits in one place for a while and
then self-destructs.

ROBOT SIMULATION TEMPLATE
We haven't built any of the Bot subclasses yet, but I
have already created:

A barebones module bots containing a class Bot.
This robot sits in one place. In bots.py in the
sample code repository.
A script botsimulation.py to run the
simulation and show it with simple text-based
graphics.

SUPER()
In methods of a subclass, super() returns a version
of self that behaves like an instance of the
superclass.

super() allows the subclass to call methods of the
superclass even if the subclass overrides them.

FROM
The from keyword can be used to import individual
symbols from a module into the global scope.

So

is equivalent to

Please use from very sparingly!

import mymodule

...

mymodule.useful_function() # module name needed

from mymodule import useful_function

...

useful_function() # no module name needed

REFERENCES
I discussed inheritance in , using "Square is a subclass of
Rectangle" as an example in this .

See Lutz, Chapter 31 for more discussion of inheritance.

Lutz, Chapters 26-32 discuss object-oriented programming.

REVISION HISTORY
2021-01-22 Indicate worksheet 2 solutions posted; fix typo
2021-01-22 Initial publication

MCS 260 Fall 2020 Lecture 25
geometric object module

https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture25.html
https://github.com/emilydumas/mcs260fall2020/blob/master/samplecode/geom/geom.py

