
LECTURE 43
PANDAS

MCS 275 Spring 2021
Emily Dumas

LECTURE 43: PANDAS
Course bulletins:

Complete your course evaluations

 is due 6pm CDT Friday April 30.

The project 4 autograder is now open.

Install pandas with

Today's

Project 4

python3 -m pip install pandas

pandas intro notebook

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/projects/project4.html
https://www.dumas.io/teaching/2021/spring/mcs275/nbview/samplecode/pandas/pandas-intro.html

PANDAS
Pandas is a module for working with tabular data, i.e.
data in a 2D array where each column has a name and
fixed data type (e.g. name "year", type integer).

id name atomic mass

14 Silicon 28.086

78 Platinum 195.084

In pandas, every row must have a unique identifier
called its index. It can be just a 0-based index (the
default) but other types are allowed (e.g. date/time).

TLDR
Pandas provides a data structure to properly
represent the contents of a CSV or spreadsheet in
Python.

or

pandas : csv :: bs4 : html.parser

PANDAS FEATURES
Excellent file format support: CSV, TSV, JSON, XLS,
XLSX, SQL, SAS, HTML tables, ...

Searching, filtering, and transformation, with interface
similar to numpy.

Excellent interoperability with numpy and matplotlib.

Wide user base, active development. (4 releases since
MCS 275 started!)

DO I NEED THIS?
There are lots of storage formats for tabular data you
might consider. Most have Python I/O modules.

Of these, only SQL provides the kind of advanced
searching, filtering, etc., that pandas offers. However,
SQL syntax is comparatively heavy and not tightly
integrated with Python language. ()

Another option is to just use a spreadsheet program.
Scripts/notebooks offer better formalization,
documentation, and reproducibility of analysis,
though.

But SQL is great!

IN DEFENSE OF SQL
Pandas is for data analysis, usually by one person,
working with data that can fit in memory of one
machine. It does not specify a storage format or
provide for concurrent access.

For persistent data that an application program will
access in a predictable way, you should probably use
SQL.

For exploration, visualization, cleaning, and
transformation of a small dataset (a few GB max),
pandas is an excellent choice.

TEMPLATE
import numpy as np

import pandas as pd

and optionally

import matplotlib.pyplot as plt

CORE PANDAS CONCEPTS
index - The unique identifier of a row.
pd.Series - A single column of tabular data;
behaves like a blend of numpy array (typed, fast)
and a dictionary (index of arbitrary type).
pd.DataFrame - A table with named, typed
columns and ordered, indexed rows. Equivalent to a
collection of series that all share the same index.

SPECIAL DATA TYPES
pd.Timestamp # like datetime.datetime but can autoparse

pd.Timedelta # like datetime.timedelta

pd.Categorical # enumerated type (fixed set of possible values

import numpy as np

import pandas as pd

Read entire CSV file into a dataframe

df = pd.read_csv("mcs275gradebook.csv")

Access elements

df["Quiz 11"] # one column

df["Quiz 11"]["Emily Dumas"] # entry in that row

df.loc["Emily Dumas"] # one row

df.iloc[2] # third row

REFERENCES
Chapter 3 of

REVISION HISTORY
2021-04-28 Notebook link
2021-04-28 Initial publication

Python Data Science Handbook by Jake VanderPlas

pandas documentation

https://jakevdp.github.io/PythonDataScienceHandbook/
https://pandas.pydata.org/docs/

