
LECTURE 42
ARGPARSE

MCS 275 Spring 2021
Emily Dumas

LECTURE 42: ARGPARSE
Course bulletins:

 is due 6pm CDT Friday April 30.

The project 4 autograder is now open.

On Wednesday we'll discuss pandas, a module for
working with tabular data. Install it with

Complete your course evaluation (May 2 deadline)

Project 4

python3 -m pip install pandas

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/projects/project4.html

COMMAND LINE INTERFACE
In most settings where programs are developed, basic
familiarity and comfort with working in a
shell/terminal is important.

This is especially true in Unix/Linux, and a lot of
computing involves Unix/Linux in some way.

Today we'll focus on Python scripts that are meant to
be run and used entirely in a shell, i.e. that use a
command line interface or CLI.

EXECUTABLE PYTHON SCRIPTS
In Unix/Linux you can make a Python script file directly
executable by adding an interpreter specification line
("shebang") at the beginning of the file

and then marking the file as executable, using shell
command

#!/usr/bin/python3

This example works on most Linux

"""Show Python version and exit"""

import sys

print(sys.version)

chmod +x myscript.py

EXECUTABLE PYTHON SCRIPTS
In Unix/Linux you can make a Python script file directly
executable by adding an interpreter specification line
("shebang") at the beginning of the file

and then marking the file as executable, using shell
command

#!/usr/bin/env python3

This example works on MacOS and most Linux

"""Show Python version and exit"""

import sys

print(sys.version)

chmod +x myscript.py

OPTIONS AND ARGUMENTS
CLI programs o�en want to accept:

Required positional arguments (e.g. input filename,
directory to search, ...)
Options (e.g. iterate 5 times, write to "out.txt"
instead of terminal, use alternate scrape URL, ...)
Flags (e.g. enable verbose output, allow overwriting
an existing file, ...)

OPTIONS
A configurable aspect of the program's operation that
can be set or changed by adding command line
argument(s).

E.g. A scraper might default to waiting 30 seconds
between requests, but allow you to change this on the
command line. Some popular syntaxes:

scrape --delay 5 # my favorite; human readable!

scrape -d5 # terse but ok

scrape -d 5 # also used

scrape --delay=5 # also used

scrape -delay 5 # less common

scrape /d 5 # rare except in Windows

scrape /delay 5 # rare except in Windows

OPTIONS AND ARGUMENTS
Linux/MacOS examples:

positional argument

cat mcs275/slides/lecture42.html

ls mcs275/public/samplecode

cp lecture_template.html lecture43.html

flags

ls -l

ls --human-readable

options

find . -name '*.html' # recursive search for HTML files

USAGE AND HELP
If invalid or insufficient arguments are given, a good
CLI program will display a short usage message
(explaining how to use it).

It is best to also offer a help flag (e.g. --help or -h)
that prints a more detailed usage message and list of
options.

ARGPARSE
Parsing and extracting options, arguments, and flags
from sys.argv is difficult to do well.

But in Python you can (and should) usually avoid
writing command line parsers from scratch.

The standard library module is flexible and
easy to use.

argparse

https://docs.python.org/3/howto/argparse.html

KEY FEATURES
Argument and option type checking
Automatic help and usage messages
Automatic error messages
Allows an option to have both short and long names
(e.g. -h and --help)
Supports many common ways of writing options

Minimal argparse example from the :module docs
import argparse

parser = argparse.ArgumentParser()

parser.add_argument(

 "square",

 help="display a square of a given number",

 type=int # if not specified, default type is string

)

args = parser.parse_args() # parse or show error and exit

print(args.square**2) # arguments and options are attributes o

 # the `args` object returned above

https://docs.python.org/3/howto/argparse.html

REFERENCES

Section 13.3 of Beazley and Jones (Python Cookbook) discusses argparse and gives some
examples.

REVISION HISTORY
2021-04-26 Initial publication

argparse module documentation

https://docs.python.org/3/howto/argparse.html

