
LECTURE 41
BEAUTIFUL SOUP

MCS 275 Spring 2021
Emily Dumas

LECTURE 41: BEAUTIFUL SOUP
Course bulletins:

 is due 6pm CDT Friday April 30.

Remember to install beautifulsoup4 with

so you'll be ready for Worksheet 15!

Project 4

python3 -m pip install beautifulsoup4

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/projects/project4.html

BS4 BASICS
str(soup) # the HTML

soup.prettify() # prettier HTML

soup.title # first (and only) title tag

soup.p # first p tag

soup.find("p") # first p tag (alternative)

soup.p.em # first em tag within the first p tag

soup.find_all("a") # list of all a tags

WORKING WITH TAGS
str(tag) # HTML for this tag and everything inside it

tag.name # name of the tag, e.g. "a" or "ul"

tag.attrs # dict of tag's attributes

tag["href"] # get a single attribute

tag.text # All the text nodes inside tag, concatenated

tag.string # If tag has only text inside it, returns that text

 # But if it has other tags as well, returns None

tag.parent # enclosing tag

tag.contents # list of the children of this tag

tag.children # iterable of children of this tag

tag.banana # first descendant banana tag (sub actual tag name!

tag.find(...) # first descendant meeting criteria

tag.find_all(...) # descendants meeting criteria

tag.find_next_sibling(...) # next sibling tag meeting criteria

SEARCHING
Arguments supported by all the find* methods:

Also work with find(), find_next_sibling(),
...

tag.find_all(True) # all descendants

tag.find_all("tagname") # descendants by tag name

tag.find_all(href="https://example.com/") # by attribute

tag.find_all(class_="post") # by class

tag.find_all(re.compile("^fig")) # tag name regex match

tag.find_all("a",limit=15) # first 15 a tags

tag.find_all("a",recursive=False) # all a *children*

SIMULATING CSS
soup.select(SELECTOR) returns a list of tags
that match a CSS selector, e.g.

There are many CSS selectors and functions we
haven't discussed, so this gives a powerful alternative
search syntax.

soup.select(".wide") # all tags of class "wide"

ul tags within divs of class messagebox

soup.select("div.messagebox ul")

all third elements of unordered lists

soup.select("ul > li:nth-of-type(3)")

The CSS selector examples here were based on those
in the Beautiful Soup documentation.

SKETCH OF A SCRAPER
from urllib.request import urlopen

from bs4 import BeautifulSoup

import csv

grab and parse the HTML

with urlopen("https://space.wasps/sol-system/") as fobj:

 soup = BeautifulSoup(fobj,"html.parser")

find the div we care about

plansdiv = soup.find("div",id="secret_plans")

save all links in that div to a CSV file

with open("plan_links.csv") as outfile:

 writer = csv.writer(outfile)

 writer.writerow(["dest","linktext"])

 for anchor in plansdiv.find_all("a"):

 writer.writerow([anchor["href"], anchor.text])

EXAMPLE SCRAPER
UIC's academic calendar is hosted at

.

Let's write a scraper to convert the semester and
summer calendar data to a structured format (CSV or
JSON).

https://catalog.uic.edu/ucat/academic-calendar/

https://catalog.uic.edu/ucat/academic-calendar/

SCRAPER TIPS
Develop using a local snapshot of the HTML

Avoid any processing or transformation; just try to
faithfully extract the data into a structured format

Be mindful of maintenance cost (e.g. time); keeping
a scraper working as a site that changes over time is
difficult. Does size/value of data justify it? [,]

Try to minimize dependence on markup details that
seem most likely to change

1 2

https://xkcd.com/1319/
https://xkcd.com/1205/

REFERENCES

The is beautifully clear.

 covered Python's datetime module

REVISION HISTORY
2021-04-23 Initial publication

urllib documentation

Beautiful Soup documentation

MCS 260 Fall 2020 Lecture 37

datetime module docs

https://docs.python.org/3.8/library/urllib.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture37.html
https://docs.python.org/3/library/datetime.html

