
LECTURE 4
OBJECT-ORIENTED PROGRAMMING

SPECIAL METHODS AND OVERLOADING
MCS 275 Spring 2021

Emily Dumas

LECTURE 4: SPECIAL METHODS AND OVERLOADING
Course bulletins:

At this point you must have read the syllabus.

Discord open (link in the zoom chat or Blackboard).

Worksheet 2 available.

OBJECT-ORIENTED PROGRAMMING
Today we're starting our unit on object-oriented
programming (OOP).

We assume knowledge of: Class definitions, creating
instances, accessing attributes, calling methods.

We DO NOT assume knowledge of: Subclasses,
inheritance, special methods.

REVIEW OF SOME KEY CONCEPTS
class -- A type in that combines attributes (data) and
methods (behavior).
instance or object -- A value whose type is a certain
class (e.g. "hello" is an instance of str)

attribute -- A variable local to an object, accessed as
objname.attrname.

constructor -- The method named __init__ that is

called when a new object is created.

SPECIAL METHODS
In Python, built-in operations are often silently
translated into method calls.

e.g. A+B turns into A.__add__(B)

These special method names begin and end with two
underscores (__). They are used to customize the way

your classes work with built-in language features.

Using these to add special behavior for operators like
+,-,* is called operator overloading.

OPERATOR EXAMPLES
Expression Special method

A==B A.__eq__(B)

A+B A.__add__(B)

A-B A.__sub__(B)

A*B A.__mul__(B)

A/B A.__truediv__(B)

A**B A.__pow__(B)

 in the Python documentation.List of many more

https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

MORE SPECIAL METHODS
Expression Actually calls

str(A) A.__str__()

len(A) A.__len__()

abs(A) A.__abs__()

bool(A) A.__bool__()

A[k] A.__getitem__(k)

A[k]=v A.__setitem__(k,v)

LIVE CODING
Let's build classes:

Point -- point in the plane

Vector -- vector in the plane

Difference of two Points is a Vector.

Can multiply a Vector by a float or add it to a Point.

LANGUAGE FEATURES USED
isinstance(obj,classname) -- returns bool

indicating whether obj is an instance of the named

class (or subclass thereof)
NotImplemented -- Special symbol that operators

should return if the operation is not supported

__ADD__ & __RADD__
In evaluating A+B, Python first tries

but if that fails (returns NotImplemented), it will try

There are reflected versions of all the binary operations
(e.g. __rmul__).

A.__add__(B)

B.__radd__(A)

OVERLOADING DANGER
Given the very flexible overloading system in Python,
it's easy to be too clever.

Overloading is best used when a function or operator
has a clear meaning for a class, and when the operation
is so frequently used that direct method calls would be
cumbersome.

Avoid overloading when it makes code harder to
understand!

Note: This is good advice, but wasn't actually discussed in Lecture 4.

REFERENCES
I discussed overloading in , and used this

 as an example. Overloading is often, but not always, covered in MCS 260.

See Lutz, Chapter 30 for more information about overloading.

Lutz, Chapters 26-32 discuss object-oriented programming.

REVISION HISTORY
2021-01-22 Retrospective editing based on what was covered
2021-01-19 Initial publication

MCS 260 Fall 2020 Lecture 24 geometric object
module

https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture24.html
https://github.com/emilydumas/mcs260fall2020/blob/master/samplecode/geom/geom.py
https://github.com/emilydumas/mcs260fall2020/blob/master/samplecode/geom/geom.py

