
LECTURE 38
WEB APP WRAP-UP

MCS 275 Spring 2021
Emily Dumas

LECTURE 38: WEB APP WRAP-UP
Course bulletins:

 posted. Make a Flask+SQLite
app. Very flexible rules (e.g. can give and receive help,
use online resources, base it on Yellaro/Whinge or
not).

Project 4 is due 6pm CDT Friday April 30.

Project 4 description

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/projects/project4.html

This is the last in our lecture series focused on live
coding two web applications (source):

Yellaro - Simple chat application
Whinge - Submit your pet peeves, vote on others'
submissions

here

https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/web

CHAT APP TODO
✓ HTML mockup
✓* Stylesheet
✓ Database schema & test data
✓ Flask route to generate front page
✓* Add form to post a message to HTML
✓ Flask route for new message submission

* Additional refinements outside lecture.

VOTE APP TODO
✓* HTML mockup
✓* Stylesheet
✓* Database schema & test data
✓* Flask route to generate front page
✓* Form to submit new item
✓* Flask route to create new item
Make the + and - buttons work
Second view (chrono vs score)

* Copied from chat app with minor changes.

CHAT APP ROUTES
/ - (GET) show message feed

/post - (POST) add message

VOTE APP ROUTES
/top/ - (GET) show items, ranked

/new/ - (GET) show items, chrono

/post - (POST) submit item

/plus?postid=15 - (GET) score += 1

/minus?postid=15 - (GET) score -= 1

FLASK FUNCTIONS
url_for(func_name,param1=val1,param2=val2,...) -

Get URL corresponding to a function within this application, with
optional query parameters, e.g.
url_for("record_score",postid=5,score=11) might

return "/setscore?postid=5&score=11" if your app

contains:

@app.route("/setscore")

def record_score():

 print("recording score {} for postid {}".format(

 flask.request.values.get("score"),

 flask.request.values.get("postid"),

)

FLASK FUNCTIONS
redirect(url) - Returning this object from a route will cause

the HTTP server to issue a 302 response, redirecting the client to
url. (Basically, it means "ask them to load a different URL")

abort(http_error_code) - Immediately stop and return a

HTTP error code (usually 400 bad request, 401 not authorized,
403 forbidden, or 404 not found).

RETROSPECTIVE
Some of the things you'd do differently in a "real" application:

Templates: Instead of strings containing HTML tags embedded in the Python application
code, we'd write HTML templates that the Flask app would render.

Cookies: login page checks credentials against DB, sets browser cookie. Auth-required
pages check for it, redirect to login page if not found.

JavaScript: e.g. to check for new messages in real time, post new message without loading
a new page

Pagination: Links to show next/prev page of messages or posts.

Better HTML+CSS: Bottom of the message feed flush with bottom of div. Maybe infinite
scrollback with JS?

Better vote schema: Instead of storing vote counts (or in addition to them), store a table
of user-vote tuples. Allows vote policy enforcement (e.g. one vote per user).

REFERENCES
 - Write and test HTML+CSS quickly in browser

REVISION HISTORY
2021-04-16 Initial publication

jsfiddle

HTML tutorial from w3schools

CSS tutorial from w3schools

The Flask tutorial

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/1.1.x/tutorial/

