
LECTURE 35
HTTP AND FLASK

MCS 275 Spring 2021
Emily Dumas

LECTURE 35: HTTP AND FLASK
Course bulletins:

Please install Flask, e.g. with

in preparation for using it in upcoming assignments.

If you already saw Flask, HTTP, CSS in MCS 260:
Great, but don't get complacent! Project 4 will focus
on database and web stuff.

python3 -m pip install Flask

MOCKUPS
First, let's check in on front page mockups for our two
apps (chat and vote) with updated CSS.

Reminder: You can always get the code from the
.sample code repository

https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/web

FILE PROTOCOL
So far, I've been opening files in the web browser, using
URLs with the file protocol.

There's no network communication here. The browser
just opens the file using the OS interface.

To make an actual web site or application, we need an
HTTP server.

PYTHON'S BUILT-IN HTTP
SERVER

Opens a web server that serves files in the current directory and its
subdirectories.

Visit http://localhost:8000/ in a browser (or substitute
other port number shown in startup message) to see index.html.

Firewall rules typically prevent incoming connections from the
internet (and maybe the local network too). That's good! Or

python3 -m http.server

python3 -m http.server --bind 127.0.0.1

will make sure it only listens for connections from the same
machine.

INDEX.HTML
Most HTTP servers that deliver resources from a
filesystem will look for a file called index.html and
send it in response to a request that ends in a /.

(i.e. if no filename is given, index.html is used.)

HTTP VERBS
GET — Ask the server for a resource.
POST — Submit data to a resource.

e.g. is
sent to dumas.io when you load the home page of
my Fall 2020 MCS 260 course.

More detailed look at an HTTP GET request:
.

GET /teaching/2020/fall/mcs260/

MCS 260
Fall 2020 Lecture 33

https://www.dumas.io/teaching/2020/fall/mcs260/
https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture33.html/
https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture33.html/

HTTP RESPONSE CODES
The answer to any HTTP request includes a numeric
code indicating success or error.

There are ; the first digit is o�en all you
need to know:

2xx — success
3xx — redirection; more action required (e.g.
moved)
4xx — client error; problem, your fault
5xx — server error; problem, not your fault

lots of codes

https://httpstatuses.com/

FLASK
 is a Python web framework. It makes it easy to

write Python programs that respond to HTTP requests
(e.g. web applications, APIs).

Competitors include:

 — minimalist like Flask
 — huge and full-featured

Flask

Bottle
Django

https://flask.palletsprojects.com/
http://bottlepy.org/docs/dev/
https://www.djangoproject.com/

MINIMAL FLASK
from flask import Flask

app = Flask(__name__)

@app.route("/positivity/")

def name_of_function_does_not_matter():

 return """<!doctype html>

 <html>

 <body>

 You can do it!

 </body>

 </html>

 """

app.run()

REFERENCES
 - Write and test HTML+CSS quickly in browser

REVISION HISTORY
2021-04-09 Initial publication

jsfiddle

HTML tutorial from w3schools

CSS tutorial from w3schools

The Flask tutorial

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/1.1.x/tutorial/

