
LECTURE 31
SQL AND SQLITE

MCS 275 Spring 2021
Emily Dumas

LECTURE 31: SQL AND SQLITE
Course bulletins:

Four quizzes le� (11,12,13,14). The last is due on
Tuesday April 27.

Project 4 will be due on Friday April 30. The project
description will be available by April 12, and the
autograder by April 19.

There are no course activities during final exam
week; a�er April 30, you're done!

SQLITE
In lecture, I'll be using this RDBMS in two ways.

sqlite3 module — You need this. You already
have it, because it is part of the Python standard
library.

 sqlite3.exe —
Optional. I'll use it to run SQL commands, which you
could also do from a Python program.

The command line shell

https://sqlite.org/cli.html

SQLITE COMMAND LINE SHELL
INSTALLATION

Windows — Download the "sqlite-tools" zip file for
windows from . You want
the tools, NOT the DLL. Unzip it to find an executable
called "sqlite.exe". You can double-click to run it, or
put it somewhere you can find in the terminal and
run it from powershell.
MacOS — You already have it as
/usr/bin/sqlite3. You can probably just type
sqlite3 in a terminal.
Linux — You may already have it (try sqlite3 in a
terminal), otherwise check your distro package
manager for a package that installs it. In Debian and
Ubuntu that package is called sqlite3.

the sqlite download page

https://sqlite.org/download.html

SQLITE HELLO WORLD
Let's write a Python program to make SQLite database,
add one table to it, add a couple of rows of data to the
table, then read them back.

Then you use it as: sqlite3[.exe] DBFILENAME.

CONNECTING TO A DATABASE
In sqlite3, opening a "connection" means opening
or creating a database file.

import sqlite3

con = sqlite3.connect("solarsystem.sqlite") # .db also popula

con.execute(...sql_statement_goes_here...)

con.commit() # Save any changes to disk

con.close() # Close the database file

DIFFERENCES WITH OTHER
RDBMS

Python has a standard interface (DB-API) for database modules, which sqlite3 follows.
So you can almost use these code examples with MySQL, PostgreSQL, or others.

However, we've used one non-standard feature specific to the sqlite3 module.

In other DB-API modules, you cannot call .execute() on a connection object directly.
Instead you need to build a "cursor", e.g.

sqlite3 offers a .execute() method directly on connection objects as a convenience.

import sqlite3

con = sqlite3.connect("solarsystem.sqlite")

cur = con.cursor() # thing that can execute commands

cur.execute(...sql_statement_goes_here...)

con.commit() # It's still the connection that commits

con.close() # and the connection that is closed

OUR FIRST SQL

Creates a table with three columns. Two rows are
added. Then we ask for all of the rows from that table.

More on SQL commands later!

CREATE TABLE planets (

 name TEXT, -- name shouldn't be highlighted there

 dist REAL,

 year_discovered INTEGER

);

INSERT INTO planets VALUES ("Earth", 1.0, null);

INSERT INTO planets VALUES ("Neptune", 30.1, 1846);

SELECT * FROM planets; -- returns all the rows

PLANETS
Name Distance from sun Year discovered

(AU)

Mercury 0.4 ?

Venus 0.7 ?

Earth 1 ?

Mars 1.5 ?

Jupiter 5.2 ?

Saturn 9.5 ?

Uranus 19.2 1781

Neptune 30.1 1846

* Data for the solar system. If you are attending MCS 275 remotely from another star system, you may subtitute local data.

GETTING DATA FROM SQLITE
con.execute("SELECT ...") doesn't return the
rows directly. It returns a Cursor* object which is ready
to give you those rows upon request.

It is iterable, giving rows as tuples. Alternatively:

Cursor.fetchone gets the next row (or None).

Cursor.fetchall gets a list of all the result rows.

* Database cursors are a whole separate topic, but for
our purposes I suggest mentally replacing the name
Cursor with ResultRowsIterable.

GIVING DATA TO SQLITE
To pass values to a statement in execute(), use ?
characters as placeholders and then give a tuple of
values in the second argument.

* .

works, but don't do this*

con.execute("INSERT INTO planets VALUES (\"Earth\", 1.0, null)

do this instead

con.execute(

 "INSERT INTO planets VALUES (?,?,?);",

 ("Earth", 1.0, None)

)

Relevant XKCD comic

https://xkcd.com/327/

SQL STATEMENTS
Now I'll talk about and demonstrate more SQL features and syntax,
focusing on the most important statements—SELECT, INSERT,
UPDATE, DELETE, CREATE TABLE, and DROP TABLE.

I'll work in the command line shell using a * of
stars.

SQL syntax (SQLite dialect):
 (nice syntax diagrams)

sqlite3 Python module (and some SQL):
 module docs

 (O'Reilly text)

sample database

sqlite language docs
sqlitetutorial.net

sqlite3
Deitel and Deitel Section 17.2

https://dumas.io/teaching/2021/spring/mcs275/data/hyg_data.zip
https://sqlite.org/lang.html
https://www.sqlitetutorial.net/
https://docs.python.org/3/library/sqlite3.html
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
https://github.com/astronexus/HYG-Database

CREATE TABLE

Types include: TEXT, REAL, INTEGER

Modifiers include: UNIQUE, NOT NULL, PRIMARY
KEY

CREATE TABLE table_name (

 col1 TYPE1 [MODIFIERS],

 col2 TYPE2 [MODIFIERS], ...

); -- or you could write it all on one line!

INSERT
Add one row to an existing table.

Values for columns not specified will be set to null (or
autogenerated, if a primary key).

Can fail in various ways (e.g. type mismatch, null value
in NOT NULL column; primary key value duplicates
existing row).

-- Set every column (need to know column order!)

INSERT INTO table_name

VALUES (val1, val2, val3, val4, val5, val6, val7);

-- Set some columns, in an order I specify

INSERT INTO table_name (col1, col7, col3)

VALUES (val1, val7, val3);

SELECT
Find and return rows.

Conditions can be e.g. equalities and inequalities.

WHERE, ORDER BY, LIMIT can be used together, but
must appear in that "WOBL" order. ()

SELECT * FROM table_name; -- give me everything

SELECT * FROM table_name WHERE condition; -- some rows

SELECT col3, col1 FROM table_name; -- some columns

SELECT * FROM table_name LIMIT 10; -- at most 10 rows

SELECT * FROM table_name

ORDER BY col2; -- sort by col2, smallest first

SELECT * FROM table_name

ORDER BY col2 DESC; -- sort by col2, biggest first

Details.

https://sqlite.org/lang_select.html

SQL CONDITIONS
Examples of things that can appear a�er WHERE:

col = value -- Also supports >, >=, <, <=, !=

col IN (val1, val2, val3)

col BETWEEN lowval AND highval

col IS NULL

col IS NOT NULL

stringcol LIKE pattern -- string pattern matching

condition1 AND condition2

condition1 OR condition2

LIKE

In a pattern string:

% matches any number of characters (including 0)
_ matches any single character

e.g. "%d_g" matches "fossil dig" and "dog"
but does not match "hypersonic drag", "dog
toy", or "dg".

coursetitle LIKE "Introduction to %"

itemtype LIKE "electrical adapt_r"

UPDATE
Change values in a row (or rows).

Warning: Every row meeting the condition is changed!

Also supports ORDER BY and LIMIT.

UPDATE table_name SET col1=val1, col5=val5 WHERE condition;

DELETE
Remove rows matching a condition.

Also supports ORDER BY and LIMIT (e.g. to remove n
rows with largest values in a given column).

Immediate, irreversible.

DELETE FROM table_name WHERE condition;

DROP TABLE
Deletes an entire table.

Immediate, irreversible. Think of it as "throw the only
copy of this table into a pool of lava". Use caution.

DROP TABLE table_name; -- no such table = ERROR

DROP TABLE IF EXISTS table_name; -- no such table = ok

REFERENCES

 has a nice tutorial where you can run SQL command directly in your
browser. Their SQLite install instructions are detailed and easy to follow, too.

 by Deitel and Deitel, Section 17.2.
(This is an O'Reilly book, free for anyone with a UIC email; see course page for login
details.)

Computer Science: An Overview by Brookshear and Brylow, Chapter 9.

REVISION HISTORY
2021-03-31 Typos fixed
2021-03-31 Initial publication

SQLite home page

sqlitetutorial.net

Intro to Python for Computer Science and Data Science

https://www.sqlite.com/index.html
https://www.sqlitetutorial.net/
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/

