
LECTURE 23
CSV AND JSON

MCS 275 Spring 2021
Emily Dumas

LECTURE 23: CSV AND JSON
Course bulletins:

Worksheet solutions coming soon.

Project 3 pitch in Monday's lecture.

NOTEBOOK
The (small) notebook of sample code from this lecture
is .here

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/samplecode/formats/csv_and_json.html

INSTALL PILLOW
Next week: Manipulating images with the Python
package Pillow. To prepare, please

Or substitute the correct interpreter name for your
platform.

If you have trouble, check the and let
us know if you don't �nd a solution there.

python3 -m pip install pillow

install instructions

https://pillow.readthedocs.io/en/stable/installation.html

MODULES
Python has a number of built-in modules to support
reading and writing special �le formats. We'll cover two
of these today:

csv for Comma Separated Value �les

json for Javascript Object Notation �les

CSV
Text-based format for tabular data. Fundamentally
based on rows and columns.

Used for exchanging data with spreadsheet and
database programs.

Untyped. Up to reader to �gure out string/�oat/int/etc.

District,Fin-Sub,Chrgbl Fin No,PO Name,Unit Name,Property Address,County,

Greater Boston,431120-G01,431120,BARRINGTON,MAIN OFFICE,200 MIDDLE HWY,BR

Greater Boston,432360-G01,432360,COVENTRY,MAIN OFFICE,1550 NOOSENECK HILL

Greater Boston,434480-G01,434480,HARRISVILLE,MAIN OFFICE,131 HARRISVILLE

Greater Boston,436020-G01,436020,NEWPORT,MAIN OFFICE,320 THAMES ST STE 1,

Greater Boston,436090-G02,436090,NORTH KINGSTOWN,MAIN OFFICE,7715 POST RD

Greater Boston,436580-G02,436580,PASCOAG,MAIN OFFICE,35 BRIDGE WAY,PROVID

Greater Boston,436723-G01,436723,PAWTUCKET,CUMBERLAND BR.,2055 DIAMOND HI

Greater Boston,436720-G03,436720,PAWTUCKET,DARLINGTON,30 MONTICELLO RD,PR

Greater Boston,436720-G01,436720,PAWTUCKET,MAIN OFFICE,40 MONTGOMERY ST,P

Greater Boston,436720-G01,436720,PAWTUCKET,MAIN OFFICE,40 MONTGOMERY ST,P

Greater Boston,436860-G01,436860,PORTSMOUTH,MAIN OFFICE,95 CHASE RD,NEWPO

Greater Boston,437140-G07,437140,PROVIDENCE,CORLISS PK. STA & VMF,55 CORL

Greater Boston,437140-G07,437140,PROVIDENCE,CORLISS PK. STA & VMF,55 CORL

Greater Boston,437178-G01,437178,PROVIDENCE,EAST PROVIDENCE BR.,17 GROVE

Greater Boston,437166-G01,437166,PROVIDENCE,JOHNSTON BRANCH,1530 ATWOOD A

Greater Boston,437170-G01,437170,PROVIDENCE,OLNEYVILLE STA,100 HARTFORD A

Greater Boston,437141-G08,437141,PROVIDENCE,P&DC,24 CORLISS ST RM 100,PRO

Greater Boston,437141-G08,437141,PROVIDENCE,P&DC,24 CORLISS ST RM 100,PRO

Greater Boston,437141-G08,437141,PROVIDENCE,P&DC,24 CORLISS ST RM 100,PRO

Greater Boston,438260-G07,438260,WAKEFIELD,MAIN OFFICE,551 KINGSTOWN RD,W

Greater Boston,438260-G01,438260,WAKEFIELD,NARRAGANSETT BR.,15 MEMORIAL S

Greater Boston,438540-G01,438540,WARREN,MAIN OFFICE,53 CHILD ST,BRISTOL,W

Source: USPS

https://about.usps.com/who/legal/foia/owned-facilities.htm

KEY CSV FEATURES
May or may not have header row
Quotes used around �eld values that may contain
commas.

READING CSV

Note: Should always pass newline="" to open()

when opening to read/write CSV.

rdr = csv.reader(fobj)

for row in rdr: # reader objects are iterable

 print("First column of this row:",row[0])

 print("Second column of this row:",row[1])

READING CSV

Note: Should always pass newline="" to open()

when opening to read/write CSV.

rdr = csv.DictReader(fobj) # file MUST have header row

for row in rdr: # rows will be dicts

 print(row["name"])

 print(row["project2_score"])

WRITING CSV

Disadvantage: Easy to get the order of columns wrong,
or make index mistakes.

w = csv.writer(fobj)

Write a header row

w.writerow(["course","instructor"])

Write data rows

w.writerow(["MCS 260","Dumas"])

w.writerow(["MCS 275","Dumas"])

WRITING CSV

More verbose code, but easier to read and maintain.
Data order need not match column order. Missing keys
handled gracefully.

Set the column order

w = csv.DictWriter(fobj, fieldnames=["course","instructor"])

Write the header row

w.writeheader()

Write data rows

w.writerow({"instructor":"Dumas","course":"MATH 445"})

w.writerow({"course":"MCS 481"})

JSON
JSON stands for JavaScript object notation. It is a text-
based format for hierarchical data. Has types:

string — must use double quotes.
number — �oat, int, other? Up to reader.
boolean — lower case names true, false.

null — like Python None.

array — like Python list. Brackets and commas.

object — like Python dict. Curly braces, colons, and

commas. Keys must be strings.

{

 "date": "2020-08-31T16:29:04.122000",

 "id": "LANDSAT/LC08/C01/T1_SR/LC08_022031_20200831",

 "resource": {

 "dataset": "LANDSAT/LC08/C01/T1_SR",

 "planet": "earth"

 },

 "service_version": "v5000",

 "url": "https://earthengine.googleapis.com/v1alpha/projects/e

}

Source: NASA

https://api.nasa.gov/

KEY JSON FEATURES
Does not require data to be tabular.
Has excellent standardization and cross-language
support.
Most HTTP APIs (e.g. data portals) return JSON.
Semi-readable for humans.

READING JSON

The object returned can be hard to use if you don't have
documentation for the layout of the �le. But since it has
keys and values, it is at least explorable.

val = json.load(fobj) # read from file

val = json.loads(s) # read from string

WRITING JSON
val = { "date": "yesterday",

 "primes": [2,3,5,7,11],

 "awesome": True

 }

json.dump(val,fobj) # save exactly one object to file

s = json.dumps(val) # make JSON string

Conversion table for Python → JSON

dict → object

list or tuple → array

int or float → number

bool → boolean

None → null

REFERENCES
MCS 260 Fall 2020:

REVISION HISTORY
2021-03-11 Notebook link
2021-03-05 Initial publication

Lecture 30: CSV

Lecture 31: JSON

csv module documentation

json module documentation

Awesome JSON data sets

https://dumas.io/teaching/2020/fall/mcs260/slides/lecture30.html
https://dumas.io/teaching/2020/fall/mcs260/slides/lecture30.html
https://docs.python.org/3.8/library/csv.html
https://docs.python.org/3.8/library/json.html
https://project-awesome.org/jdorfman/awesome-json-datasets

