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LECTURE 22: SET AND DEFAULTDICT
Course bulletins:

I hope to have Project 3 ready by Monday. It is due
March 19.

Thursday discussion students: Please attempt
problem 1 of Worksheet 8 before discussion.



PLAN
Wrap up trees unit

Start language features unit



NAMED TRAVERSALS
The three most-often used recursive traversals:

preorder - Node, left, right. Used to copy BSTs.

postorder - Left, right, node. Used to delete BSTs.

inorder - Left, node, right. Used to turn BST into
sorted list.

Note: They all visit left child before right child.
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PREORDER TRAVERSAL
Typical use: Make a copy of the tree.

Insert the keys into an empty BST in this order to
recreate the original tree.
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POSTORDER TRAVERSAL
Typical use: Delete the tree.

If you delete keys in postorder, then you will only ever
be removing nodes without children.
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INORDER TRAVERSAL
Typical use: Turn a BST into a sorted list of keys.



LAST WORDS ON BINARY TREES
BSTS make a lot of data accessible in a few "hops"
from the root.
They are a good choice for mutable data structures
involving search operations.
Deletion of a node is an important feature we didn't
implement. (Take MCS 360!)



Unbalanced trees are less efficient.

MCS 360 usually covers rebalancing operations.
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SET
Python's built-in type set represents an unordered
collection of distinct objects.

Elements can be any hashable object. This is the same
restriction as dict keys. E.g.

Allowed: bool, int, float, str, tuple

Not allowed: list, set



SET USAGE
S = { 4, 8, 15, 16, 23, 42 } # Set literal

S = set()  # New empty set

S.add(5)   # S is {5}

S.add(10)  # S is {5,10}

8 in S   # False

5 in S   # True

S.discard(1)  # Does nothing

S.remove(1)   # Raises KeyError

S.remove(5)   # Now S is {10}

S.pop()  # Remove and return one element

for x in S:  # sets are iterable

    print(x)



SET OPERATIONS
Binary operations returning new sets:

Note: An earlier version of the slides claimed
incorrectly that & and | allow arbitrary iterables. The
methods .union and .intersection allow this,
but the overloaded operators require the other
operand to also be a set.

S | S2  # Evaluates to union of sets

S & S2  # Evaluates to intersection of sets

S.union(iterable)        # Like | but allows any iterable

S.intersection(iterable) # Like & but allows any iterable



SET MUTATIONS
Operations that modify a set S based on contents of
another collection.

# adds elements of iterable to S

S.update(iterable) 

# remove anything from S that is NOT in the iterable

S.intersection_update(iterable) 

# remove anything from S that is in the iterable

S.difference_update(iterable) 



MORE ABOUT SET
set has lots of other features that are described in the

.documentation

https://docs.python.org/3/library/stdtypes.html#set


Python's set is basically a dictionary without values.

For large collections, it is much faster than using a list.

Appropriate whenever order is not important, and
items cannot appear multiple times.



HISTOGRAM
You want to know how many times each character
appears in a string.

This won't work. Why?

hist = dict()

for c in s:

    hist[c] += 1



DEFAULTDICT
Built-in module collections contains a class
defaultdict that works like a dictionary, but if a
key is requested that doesn't exist, it creates it and
assigns a default value.

This works!

import collections

hist = collections.defaultdict(int)

for c in s:

    hist[c] += 1



The defaultdict constructor takes one argument,
a function default_factory.

default_factory is called to make default values
for keys when needed.

Common examples with built-in factories:
defaultdict(list)  # default value [] as returned by list()

defaultdict(int)   # default value 0, as returned by int()

defaultdict(float) # default value 0.0, as returned by float()

defaultdict(str)   # default value "", as returned by str()



REFERENCES
In optional course texts:

, discusses binary trees in .

Lutz discusses sets in Chapter 5, in the subsection "Other Numeric Types" (even
though there is nothing "numeric" about sets).

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.
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