
LECTURE 22
SET AND DEFAULTDICT

MCS 275 Spring 2021
Emily Dumas

LECTURE 22: SET AND DEFAULTDICT
Course bulletins:

I hope to have Project 3 ready by Monday. It is due
March 19.

Thursday discussion students: Please attempt
problem 1 of Worksheet 8 before discussion.

PLAN
Wrap up trees unit

Start language features unit

NAMED TRAVERSALS
The three most-often used recursive traversals:

preorder - Node, left, right. Used to copy BSTs.

postorder - Left, right, node. Used to delete BSTs.

inorder - Left, node, right. Used to turn BST into
sorted list.

Note: They all visit left child before right child.

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL
Typical use: Make a copy of the tree.

Insert the keys into an empty BST in this order to
recreate the original tree.

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL
Typical use: Delete the tree.

If you delete keys in postorder, then you will only ever
be removing nodes without children.

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL
Typical use: Turn a BST into a sorted list of keys.

LAST WORDS ON BINARY TREES
BSTS make a lot of data accessible in a few "hops"
from the root.
They are a good choice for mutable data structures
involving search operations.
Deletion of a node is an important feature we didn't
implement. (Take MCS 360!)

Unbalanced trees are less efficient.

MCS 360 usually covers rebalancing operations.

Unbalanced trees are less efficient.

MCS 360 usually covers rebalancing operations.

SET
Python's built-in type set represents an unordered
collection of distinct objects.

Elements can be any hashable object. This is the same
restriction as dict keys. E.g.

Allowed: bool, int, float, str, tuple

Not allowed: list, set

SET USAGE
S = { 4, 8, 15, 16, 23, 42 } # Set literal

S = set() # New empty set

S.add(5) # S is {5}

S.add(10) # S is {5,10}

8 in S # False

5 in S # True

S.discard(1) # Does nothing

S.remove(1) # Raises KeyError

S.remove(5) # Now S is {10}

S.pop() # Remove and return one element

for x in S: # sets are iterable

 print(x)

SET OPERATIONS
Binary operations returning new sets:

Note: An earlier version of the slides claimed
incorrectly that & and | allow arbitrary iterables. The
methods .union and .intersection allow this,
but the overloaded operators require the other
operand to also be a set.

S | S2 # Evaluates to union of sets

S & S2 # Evaluates to intersection of sets

S.union(iterable) # Like | but allows any iterable

S.intersection(iterable) # Like & but allows any iterable

SET MUTATIONS
Operations that modify a set S based on contents of
another collection.

adds elements of iterable to S

S.update(iterable)

remove anything from S that is NOT in the iterable

S.intersection_update(iterable)

remove anything from S that is in the iterable

S.difference_update(iterable)

MORE ABOUT SET
set has lots of other features that are described in the

.documentation

https://docs.python.org/3/library/stdtypes.html#set

Python's set is basically a dictionary without values.

For large collections, it is much faster than using a list.

Appropriate whenever order is not important, and
items cannot appear multiple times.

HISTOGRAM
You want to know how many times each character
appears in a string.

This won't work. Why?

hist = dict()

for c in s:

 hist[c] += 1

DEFAULTDICT
Built-in module collections contains a class
defaultdict that works like a dictionary, but if a
key is requested that doesn't exist, it creates it and
assigns a default value.

This works!

import collections

hist = collections.defaultdict(int)

for c in s:

 hist[c] += 1

The defaultdict constructor takes one argument,
a function default_factory.

default_factory is called to make default values
for keys when needed.

Common examples with built-in factories:
defaultdict(list) # default value [] as returned by list()

defaultdict(int) # default value 0, as returned by int()

defaultdict(float) # default value 0.0, as returned by float()

defaultdict(str) # default value "", as returned by str()

REFERENCES
In optional course texts:

, discusses binary trees in .

Lutz discusses sets in Chapter 5, in the subsection "Other Numeric Types" (even
though there is nothing "numeric" about sets).

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2021-03-11 Correction: set operations & and | don't allow non-set iterables
2021-03-02 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and
Ranum Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

