
LECTURE 21
BST AND TREE TRAVERSALS

MCS 275 Spring 2021
Emily Dumas

LECTURE 21: BST AND TREE TRAVERSALS
Course bulletins:

Worksheet 8 available.

Thursday discussion students: Please attempt
problem 1 before discussion.

SAMPLE CODE
As a reminder, all the is available.tree sample code

https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/trees

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

Algorithm insert:
Input: BST T and a node x whose key is set, but which has no
parent or children.

Goal: Add x to T, maintaining the BST property.

1. If T.root is None, make x the root and return.

2. Otherwise, initialize variables prev=None and cur=T.root.

3. Descend into the tree as if searching for x.key, using cur to
keep track of the current node and prev the last one visited,
continuing until cur is None.

4. Make x a child of prev (choosing left or right as suits their keys).

INTEGERSET
As a sample application of BST, we can make a class
that stores a set of integers, supporting membership
testing and adding new elements.
Compare alternatives:

Unsorted list - fast to insert, but slow membership test

Sorted list - fast membership test, slow insert

IMPLEMENTATION HIDING
To use BST, you need to know about and work with
Node objects.

In contrast, IntegerSet has an interface based
directly on the values to be stored. It hides the fact
that its implementation uses a BST.

WALKING A TREE
Back to discussing binary trees (not necessarily BST).

For some purposes we need to visit every node in a
tree and perform some action on them.

To do this is to traverse or walk the tree.

NAMED TRAVERSALS
The three most-often used recursive traversals:

preorder - Node, left subtree, then right subtree.

postorder - Left subtree, right subtree, then node.

inorder - Left subtree, node, then right subtree.

Note: They all visit left child before right child.

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL

node, left, right

PREORDER TRAVERSAL
Typical use: Make a copy of the tree.

Insert the keys into an empty BST in this order to
recreate the original tree.

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL

left, right, node

POSTORDER TRAVERSAL
Typical use: Delete the tree.

If you delete keys in postorder, then you will only ever
be removing nodes without children.

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL

left, node, right

INORDER TRAVERSAL
Typical use: Turn a BST into a sorted list of keys.

REFERENCES
In optional course texts:

, discusses binary trees in .

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2021-03-01 Add another slide to insert explanation
2021-02-28 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and
Ranum Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

