
LECTURE 20
BINARY SEARCH TREES

MCS 275 Spring 2021
Emily Dumas

LECTURE 20: BINARY SEARCH TREES
Course bulletins:

Project 2 due 6pm CST today.

Starting on worksheet 8, problem 1 will have special
instructions.

Tue discussion: Problem 1 will be presented as an
example.

Thu discussion: Please do problem 1 ahead of
time.

SAMPLE CODE
I've created a new directory in the course sample
code repository.

Live coding examples from the next couple of lectures
will be added there.

trees

https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/trees

GOAL
Learn about search and insert operations on binary
search trees.

Explore an application to a fast data structure for
storing a set of integers.

BINARY SEARCH TREE (BST)
A binary tree in which:

Nodes have keys that can be compared
The key of a node is greater than or equal to any key
in its left subtree.
The key of a node is less than or equal to any key in
its right subtree.

BINARY TREE

BST

BST

BST

BST

BST

BST

BST

NOT A BST

This "just" is a binary tree with keys.

NOT A BST

This "just" is a binary tree with keys.

NOT A BST

This "just" is a binary tree with keys.

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

CODING
Let's build a class to represent nodes of a binary tree
that also store keys.

TREEVIS
I provide a module treevis in the sample code
repository that can "pretty print" a tree with the
function treeprint(root).

Challenge: Read the source of treevis and figure out
how it works!

FROM TREE TO BST
Now let's build a class that builds and manages a BST
made of Node objects.

Desired features:

Insert nodes (maintaining BST property)
Search for nodes by key

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INSERT
Take a Node object and add it to the tree in a place
that maintains the BST property.

The node must have its key set, but not its parent and
children. Insert will handle those.

INTEGERSET
Let's use this to build a class to store a collection of
integers that supports fast insertion and membership
testing.

IMPLEMENTATION HIDING
To use BST, you need to know about and work with
Node objects.

In contrast, IntegerSet has an interface based
directly on the values to be stored. It hides the fact
that its implementation uses a BST.

REFERENCES
In optional course texts:

, discusses binary trees in .

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2021-02-26 Fix incorrect integer comparison in one figure; add link to sample code
2021-02-25 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and
Ranum Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

