
LECTURE 19
TREES

MCS 275 Spring 2021
Emily Dumas



LECTURE 19: TREES
Course bulletins:

Project 2 due 6pm CST Friday. Autograder open.

Lecture 18 video has fixes not seen in live lecture
(which I'll also tell you about today).



PLAN
Finish up a bit of material intended for Lecture 18.
Discuss trees: in general, in CS, in Python



GRAPHS
In mathematics, a graph is a collection of nodes (or
vertices) and edges (which join pairs of nodes).



CONNECTIVITY
A graph is connected if every pair of nodes can be
joined by at least one path.



CONNECTIVITY
A graph is connected if every pair of nodes can be
joined by at least one path.



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



Equivalently, a tree is a connected graph with no loops.



Equivalently, a tree is a connected graph that becomes
disconnected if any edge is removed.

(Exercise: Prove this is an equivalent definition!)



ROOTS AND DIRECTIONS
The trees considered in CS usually have one node
distinguished, called the root.

There's nothing special about the root except that it is labeled as such. Any node of a tree
could be chosen to be its root node.



Such rooted trees are usually drawn with the root at top

and vertices farther from the root successively lower.



This convention is probably inspired by the way trees
look in the natural world.



Choosing a root lets us orient all of the edges so they
point away from it.

Hence the usual way of drawing a tree will have these
arrows pointing downward.



Each node (except the root) has an incoming edge, from
its parent (closer to the root).

Each node may have one or more outgoing edges, to its
children (farther from the root).



BINARY TREES
In CS, a binary tree is a (rooted) tree in which every
node has ≤ 2 children, labeled "left" and "right".

Horizontal relative position is used to indicate this
labeling, rather than explicitly writing it on the edges.



BINARY TREES
In CS, a binary tree is a (rooted) tree in which every
node has ≤ 2 children, labeled "left" and "right".

Horizontal relative position is used to indicate this
labeling, rather than explicitly writing it on the edges.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right

that can be None or other Node objects.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right

that can be None or other Node objects.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right

that can be None or other Node objects.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right

that can be None or other Node objects.



WHY?
We can also store additional information in the nodes
of a binary tree. If present, this is called the key or value
or cargo of a node.

This turns out to be a very efficient data structure for
many purposes. A lot of data can be accessed in a few
steps from the root node.



BINARY SEARCH TREE
Stores numbers or other objects allowing comparison
as node values. Enforce the rule: Each node's left child
and its descendents are smaller (or equal) to the node.
Each node's right child and its descendents are greater
than the node.



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



REFERENCES
In optional course texts:

,
discusses binary trees in .

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2021-02-24 Correct publication date and fix BST definition slide
2021-02-24 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and Ranum
Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition



