
LECTURE 18
COMPARISON SORTS

MCS 275 Spring 2021
Emily Dumas

LECTURE 18: COMPARISON SORTS
Course bulletins:

Quiz 6 due Noon CST Tuesday.

Project 2 due 6pm CST Friday. Autograder open.

Worksheet 7 coming soon.

GROWTH RATES
Let's look at the functions , , and as
grows.

n n log(n) n2 n

PARTITION
We say L is partitioned if there is an element (the pivot)

so that:

The pivot is in its final sorted position
Any element less than the pivot appears before it
Any element greater than or equal to the pivot
appears after it

partition(L,start,end) should move around

elements of L between indices start and end to

achieve this, returning the pivot position.

Algorithm quicksort:

Input: list L and indices start and end.

Goal: reorder elements of L so that L[start:end] is sorted.

1. If (end-start) is less than or equal to 1, return immediately.

2. Otherwise, call partition(L,start,end) to partition the list,

letting m be the final location of the pivot.

3. Call quicksort(L,start,m) and quicksort(L,m+1,end)

to sort the parts of the list on either side of the pivot.

PARTITION ALGORITHM
We will always use L[end-1] as the pivot (though

there are other common choices).

There is an algorithm for partition based on the idea

of using swaps to move all small elements to a contiguous
block at the beginning.

It makes a single pass through the entire list.

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

CODING TIME
Let's implement partition (with last element pivot)

in Python.

Algorithm partition:

Input: list L and indices start and end.

Goal: Take L[end-1] as a pivot, and reorder elements of L to

partition L[start:end] accordingly.

1. Let pivot=L[end-1].

2. Initialize integer index dst=start.

3. For each integer src from start to end-1:

If L[src] < pivot, swap L[src] and L[dst].

Increase dst by 1.

4. Swap L[end-1] and L[dst] to put the pivot in its proper place.

5. Return dst.

OTHER PARTITION STRATEGORIES
Popular choices for the pivot:

The last element, L[end-1] (used in lecture today)

The first element, L[start]

A random element of L[start:end]

The element L[(start+end)//2]

An element near the median of L[start:end]

(more complicated to find!)

HOW TO CHOOSE?
Knowing something about your starting data may guide
choice of partition strategy (or even the choice to use
something other than quicksort).

Almost-sorted data is a common special case where
first or last pivots are bad.

EFFICIENCY
Theorem: If you measure the time cost of quicksort in
any of these terms

Number of comparisons made
Number of swaps or assignments
Number of Python statements executed

then the cost to sort a list of length is less than ,
for some constant .

But if you average over all possible orders of the input
data, the result is less than .

n Cn2

C

Cn log(n)

BAD CASE
What if we ask our version of quicksort to sort a list

that is already sorted?

Recursion depth is (whereas if the pivot is always the
median it would be).

Number of comparisons . Very slow!

n

≈ nlog2

≈ Cn2

STABILITY
A sort is called stable if items that compare as equal
stay in the same relative order after sorting.

This could be important if the items are more complex
objects we want to sort by one attribute (e.g. sort
alphabetized employee records by hiring year).

As we implemented them:

Mergesort is stable
Quicksort is not stable

EFFICIENCY SUMMARY
Algorithm Time (worst) Time (average) Stable? Space

Mergesort Yes

Quicksort No

(Every time is used, it represents a different constant.)

Cn log(n) Cn log(n) Cn

Cn2 Cn log(n) C

C

OTHER COMPARISON SORTS
Insertion sort -- Convert the beginning of the list to a
sorted list, starting with one element and growing by
one element at a time.

Bubble sort -- Process the list from left to right. Any
time two adjacent elements are in the wrong order,
switch them. Repeat times.n

EFFICIENCY SUMMARY
Algorithm Time (worst) Time (average) Stable? Space

Mergesort Yes

Quicksort No

Insertion Yes

Bubble Yes

(Every time is used, it represents a different constant.)

Cn log(n) Cn log(n) Cn

Cn
2

Cn log(n) C

Cn
2

Cn
2

C

Cn2 Cn2 C

C

CLOSING THOUGHTS ON SORTING
Mergesort is rarely a bad choice. It is stable and sorts in

 time. Nearly sorted input is not a
pathological case. Its main weakness is its use of
memory proportional to the input size.

, which we'll discuss later, has
running time and uses constant space, but it is not
stable.

Cn log(n)

Heapsort Cn log(n)

https://en.wikipedia.org/wiki/Heapsort

There are stable comparison sorts with
running time and constant space (best in every
category!) though they are more complex.

If swaps and comparisons have very different cost, it
may be important to select an algorithm that minimizes
one of them. Python's list.sort assumes that

comparisons are expensive, and uses .

Cn log(n)

Timsort

https://en.wikipedia.org/wiki/Timsort

QUADRATIC DANGER
Algorithms that take time proportional to are a big
source of real-world trouble. They are often fast
enough in small-scale tests to not be noticed as a
problem, yet are slow enough for large inputs to disable
the fastest computers.

n2

REFERENCES
Unchanged from Lecture 17

You can refer to the that have appeared in several
recent lectures. The rest of this list is specific to mergesort and quicksort.

Making nice visualizations of sorting algorithms is a cottage industry in CS education.
Some you might like to check out:

 by Linus Lee

 by Alex Macy

Slanted line animated visualizations of and by Mike Bostock

REVISION HISTORY
2021-02-22 Fixed partition visualization
2021-02-22 Initial publication

general references about recursion

2D visualization through color sorting

Animated bar graph visualization of many sorting algorithms

mergesort quicksort

https://www.dumas.io/teaching/2021/spring/mcs275/slides/lecture13.html#/16
https://dotink.co/posts/visualizing-sorting-algorithms/
https://bl.ocks.org/alexmacy/770f14e11594623320db1270361331dc
https://bl.ocks.org/mbostock/39566aca95eb03ddd526
https://bl.ocks.org/mbostock/e1e1e7e2c360bec054ba

