
LECTURE 17
QUICKSORT

MCS 275 Spring 2021
Emily Dumas

LECTURE 17: QUICKSORT
Course bulletins:

Starting with Quiz 6, you will have 48 hours for
quizzes (Noon Sunday to Noon Tuesday).

 updated with sample data and
modules policy.

Project 2 due 6pm CST Friday, February 26.

Check out the .

Worksheet 7 will explore recursive maze solver /
generator in more depth.

Project 2 description

recursion sample code

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/projects/project2.html
https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/recursion

PLAN
Discuss mergesort a bit more
Introduce quicksort
Implement quicksort

WHY DISCUSS ALGORITHMS?
Python lists have built-in .sort() method. Why talk

about sorting?

1. Study cases of easy-to-explain problems solved in clever ways.

2. See patterns of thinking that work in other settings.

MERGESORT
Last time we discussed and implemented mergesort.

History: Developed by von Neumann (1945) and
Goldstine (1947).

But is it a good way to sort a list?

EFFICIENCY
Theorem: If you measure the time cost of mergesort in
any of these terms

Number of comparisons made
Number of assignments (e.g. L[i] = x counts as 1)

Number of Python statements executed

then the cost to sort a list of length is less than
, for some constant that only depends on

which expense measure you chose.

n

Cn log(n) C

ASYMPTOTICALLY OPTIMAL
 is pretty ef�cient for an operation that

needs to look at all elements. It's not linear in , but it
only grows a little faster than linear functions.

Furthermore, is the best possible time for
comparison sort of elements (though different
methods might have better).

Cn log(n)
n n

Cn log(n)
n

C

QUICKSORT
Another comparison sort typically implemented using
recursion. Developed by Hoare, 1959.

Unlike mergesort, it uses very little temporary storage,
and only ever swaps pairs of elements.

QUICKSORT SUMMARY
Starting with an unsorted list:

If the list has 0 or 1 elements, return immediately.
Partition: Choose an element (the pivot). Rearrange
so elements smaller than the pivot come before it,
elements larger than the pivot come after it.
Quicksort the part of the list before the pivot.
Quicksort the part of the list after the pivot.

It's divide and conquer, but with no merge step. The
hard work is instead in partitioning.

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

ASSUME WE HAVE PARTITION
For the moment, we'll take the partition step as a "black
box", assuming we already have:

Note this function uses the last element as a pivot.
Later we'll discuss other options.

def partition(L,start,end):

 """Look at L[start:end]. Take the last element as a pivot.

 Move elements around so that any value less than the pivot

 appears before it, and any element greater than or equal to

 the pivot appears after it. L is modified in place. The

 final location of the pivot is returned."""

 # TODO: Add code here

CODING TIME
Let's implement quicksort in Python.

Algorithm quicksort:

Input: list L and indices start and end.

Goal: reorder elements of L so that L[start:end] is sorted.

1. If (end-start) is less than or equal to 1, return immediately.

2. Otherwise, call partition(L) to partition the list, letting m be

the �nal location of the pivot.

3. Call quicksort(L,start,m) and quicksort(L,m+1,end)

to sort the parts of the list on either side of the pivot.

PARTITION
How to write partition(L,start,end)?

Recall we plan to make a version that uses the last
element of L[start:end] as the pivot.

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

PARTITION VISUALIZATION

REFERENCES
You can refer to the that have appeared in several
recent lectures. The rest of this list is speci�c to mergesort and quicksort.

Making nice visualizations of sorting algorithms is a cottage industry in CS education.
Some you might like to check out:

 by Linus Lee

 by Alex Macy

Slanted line animated visualizations of and by Mike Bostock

REVISION HISTORY
2021-02-22 Moved unused slides to Lecture 18 and �x partition visualization
2021-02-17 Fix description of partition step in quicksort preview
2021-02-17 Initial publication

general references about recursion

2D visualization through color sorting

Animated bar graph visualization of many sorting algorithms

mergesort quicksort

https://www.dumas.io/teaching/2021/spring/mcs275/slides/lecture13.html#/16
https://dotink.co/posts/visualizing-sorting-algorithms/
https://bl.ocks.org/alexmacy/770f14e11594623320db1270361331dc
https://bl.ocks.org/mbostock/39566aca95eb03ddd526
https://bl.ocks.org/mbostock/e1e1e7e2c360bec054ba

