
LECTURE 16
MERGESORT
MCS 275 Spring 2021

Emily Dumas



LECTURE 16: MERGESORT
Course bulletins:

Starting with Quiz 6, you will have 48 hours for
quizzes (Noon Sunday to Noon Tuesday).

 updated with sample data and
modules policy.

Project 2 due 6pm CST Friday, February 26.

Check out the .

Worksheet 7 will explore recursive maze solver /
generator in more depth.

Project 2 description

recursion sample code

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/projects/project2.html
https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/recursion


PLAN
Discuss the theory of

Divide and conquer
Sorting
Mergesort

Implement mergesort



DIVIDE AND CONQUER
A strategy that often involves recursion.

Split a problem into parts.
Solve for each part.
Merge the partial solutions into a solution of the
original problem.

Not always possible or a good idea. It only works if
merging partial solutions is easier than solving the
entire problem.



COMPARISON SORT
Suppose you have a list of objects that can be
compared with ==, >, <.

You'd like to reorder them in increasing order.

This problem is called comparison sort. There are
many solutions.



MERGESORT
A divide-and-conquer solution to comparison sort.

It is a fast solution, often used in practice.

Key: It is pretty easy to take two sorted lists and merge
them into a single sorted list.

So, let's divide our list into halves, sort each one
(recursively), then merge them.

Now we'll formalize this.



Algorithm mergesort:
Input: list L whose elements support comparison.

Goal: reorder the elements of L in place to achieve sorted order.

1. If L has 0 or 1 elements, it is already sorted. Do nothing.

2. Otherwise, copy the first half of L into a new list L1, and the rest into L2.

3. Use recursive calls to sort L1 and L2 (in place).

4. Use merge_sorted_lists to merge L1 and L2 into L.



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



MERGESORT EXAMPLE



BUT HOW TO MERGE?
This algorithm depends on having a function
merge_sorted_lists that can merge to sorted
lists into a single sorted list.



Algorithm merge_sorted_lists:
Input: sorted lists L1 and L2, and a list L of the proper length in
which to store the results.

Goal: copy all elements of L1 and L2 into L in increasing order.

1. Make three integer variables i1,i2,i to keep track of current position in L1,L2,L
respectively. Set all to zero.

2. While i1 < len(L1) and i2 < len(L2), do the following:
Check which of L1[i1] and L2[i2] is smaller.

Store the smaller one in L[i].

Increment whichever one of i1,i2 was used.

Increment i

3. Copy any remaining portion of L1 into L.

4. Copy any remaining portion of L2 into L.



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



MERGING SORTED LISTS



CODING TIME
Let's implement mergesort in Python.



REFERENCES
No changes to the references from Lecture 13

, Chapter 1. Mergesort is example 1.4.

Lutz discusses recursive functions in Chapter 19 (pages 555-559 in the print edition).

 by Deitel and Deitel, Chapter 11.

, .

Computer Science: An Overview by Brookshear and Brylow, Section 5.5.

REVISION HISTORY
2021-02-18 Move unused slides to Lecture 17
2021-02-17 Initial publication

Algorithms by Jeff Erickson

Intro to Python for Computer Science and Data Science

Think Python, 2ed, by Allen B. Downey Sections 5.8 to 5.10

https://jeffe.cs.illinois.edu/teaching/algorithms/
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62



