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LECTURE 16: MERGESORT
Course bulletins:

Starting with Quiz 6, you will have 48 hours for
quizzes (Noon Sunday to Noon Tuesday).

 updated with sample data and
modules policy.

Project 2 due 6pm CST Friday, February 26.

Check out the .

Worksheet 7 will explore recursive maze solver /
generator in more depth.

Project 2 description

recursion sample code

https://www.dumas.io/teaching/2021/spring/mcs275/nbview/projects/project2.html
https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/recursion


PLAN
Discuss the theory of

Divide and conquer
Sorting
Mergesort

Implement mergesort



DIVIDE AND CONQUER
A strategy that often involves recursion.

Split a problem into parts.
Solve for each part.
Merge the partial solutions into a solution of the
original problem.

Not always possible or a good idea. It only works if
merging partial solutions is easier than solving the
entire problem.



COMPARISON SORT
Suppose you have a list of objects that can be
compared with ==, >, <.

You'd like to reorder them in increasing order.

This problem is called comparison sort. There are
many solutions.



MERGESORT
A divide-and-conquer solution to comparison sort.

It is a fast solution, often used in practice.

Key: It is pretty easy to take two sorted lists and merge
them into a single sorted list.

So, let's divide our list into halves, sort each one
(recursively), then merge them.

Now we'll formalize this.



Algorithm mergesort:
Input: list L whose elements support comparison.

Goal: reorder the elements of L in place to achieve sorted order.

1. If L has 0 or 1 elements, it is already sorted. Do nothing.

2. Otherwise, copy the first half of L into a new list L1, and the rest into L2.

3. Use recursive calls to sort L1 and L2 (in place).

4. Use merge_sorted_lists to merge L1 and L2 into L.
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BUT HOW TO MERGE?
This algorithm depends on having a function
merge_sorted_lists that can merge to sorted
lists into a single sorted list.



Algorithm merge_sorted_lists:
Input: sorted lists L1 and L2, and a list L of the proper length in
which to store the results.

Goal: copy all elements of L1 and L2 into L in increasing order.

1. Make three integer variables i1,i2,i to keep track of current position in L1,L2,L
respectively. Set all to zero.

2. While i1 < len(L1) and i2 < len(L2), do the following:
Check which of L1[i1] and L2[i2] is smaller.

Store the smaller one in L[i].

Increment whichever one of i1,i2 was used.

Increment i

3. Copy any remaining portion of L1 into L.

4. Copy any remaining portion of L2 into L.
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CODING TIME
Let's implement mergesort in Python.



REFERENCES
No changes to the references from Lecture 13

, Chapter 1. Mergesort is example 1.4.

Lutz discusses recursive functions in Chapter 19 (pages 555-559 in the print edition).

 by Deitel and Deitel, Chapter 11.

, .

Computer Science: An Overview by Brookshear and Brylow, Section 5.5.

REVISION HISTORY
2021-02-18 Move unused slides to Lecture 17
2021-02-17 Initial publication

Algorithms by Jeff Erickson

Intro to Python for Computer Science and Data Science

Think Python, 2ed, by Allen B. Downey Sections 5.8 to 5.10

https://jeffe.cs.illinois.edu/teaching/algorithms/
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62



