
LECTURE 14
RECURSION VS ITERATION II

MCS 275 Spring 2021
Emily Dumas

LECTURE 14: RECURSION VS ITERATION
II

Course bulletins:

Project 2 description available.

Project 2 due 6pm CST Friday, February 26.

Check out the .recursion sample code

https://github.com/emilydumas/mcs275spring2021/tree/master/samplecode/recursion

PLAN
A bit about project 2
More on recursion, iteration, counting function calls
Start on backtracking

PROJECT 2 TOPIC
Focuses on recursion. Based on special classes of
strings that have the "pattern" ABB:

Egg: A and B are single characters, e.g. egg, off,
aaa

Superegg: A is a superegg or single character and B
is a single character, e.g. add, addee
Hyperegg: A and B are each hypereggs or single
characters, e.g. anoonoo, offeggegg, gooss

PROJECT 2 TASK
You'll write functions to test whether a string belongs
to these classes.

Details in the .

Later I will provide test data, but you'll need to write
your own test code.

project description

https://dumas.io/teaching/2021/spring/mcs275/nbview/projects/project2.html

FIBONACCI TIMING
n=35

recursive 1.9s

iterative <0.001s

Measured on a 4.00Ghz Intel i7-6700K CPU (2015
release date) with Python 3.8.5

FIB CALL GRAPH

Most Fibonacci numbers are computed many times!

FIB CALL GRAPH

Most Fibonacci numbers are computed many times!

MEMOIZATION
fib computes the same terms over and over again.

Instead, let's store all previously computed results,
and use the stored ones whenever possible.

This is called memoization. It only works for pure
functions, i.e. those which always produce the same
return value for any given argument values.

math.sin(...) is pure; time.time() is not.

MEMOIZING FIB
Let's add a simple memoization feature to our
recursive fib function.

MEMOIZED FIB CALL GRAPH

MEMOIZED FIB CALL GRAPH

FIBONACCI TIMING SUMMARY
n=35 n=450

recursive 1.9s > age of universe

memoized recursive <0.001s 0.003s

iterative <0.001s 0.001s

Measured on a 4.00Ghz Intel i7-6700K CPU (2015
release date) with Python 3.8.5

MEMOIZATION SUMMARY
Recursive functions with multiple self-calls often
benefit from memoization.

Memoized version is conceptually similar to an
iterative solution.

Memoization does not alleviate recursion depth limits.

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1 1

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1 1 3

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1 1 3 5

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1 1 3 5 9

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1 1 3 5 9 15

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1 1 3 5 9 15 25

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

1 1 3 5 9 15 25

0 1 1 2 3 5 8 13Fn

Theorem: Let denote the total number of times
fib is called to compute fib(n). Then

and

T (n)

T (0) = T (1) = 1

T (n) = T (n − 1) + T (n − 2) + 1.

Corollary: .

Proof of corollary: Let . Then
, and

Therefore and have the same first two terms, and
follow the same recursive definition based on the two

T (n) = 2 − 1Fn+1

S(n) = 2 − 1Fn+1

S(0) = S(1) = 1

S(n) = 2 − 1 = 2(+) − 1Fn+1 Fn Fn−1

= (2 − 1) + (2 − 1) + 1Fn Fn−1

= S(n − 1) + S(n − 2) + 1

S T

Corollary: Every time we increase by 1, the naive
recursive fib does more work.

(The ratio approaches .)

n

≈ 61.8%

/Fn+1 Fn ≈ 1.618031+ 5√
2

RECURSION WITH
BACKTRACKING

RECURSION WITH
BACKTRACKING

REFERENCES
No changes to the references from Lecture 13

, Chapter 1.

Lutz discusses recursive functions in Chapter 19 (pages 555-559 in the print edition).

 by Deitel and Deitel, Chapter 11.

, .

Computer Science: An Overview by Brookshear and Brylow, Section 5.5.

REVISION HISTORY
2021-02-15 Move some unused slides over to Lecture 15
2021-02-12 Initial publication

Algorithms by Jeff Erickson

Intro to Python for Computer Science and Data Science

Think Python, 2ed, by Allen B. Downey Sections 5.8 to 5.10

https://jeffe.cs.illinois.edu/teaching/algorithms/
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62

