
LECTURE 13
RECURSION VS ITERATION

MCS 275 Spring 2021
Emily Dumas

LECTURE 13: RECURSION VS ITERATION
Course bulletins:

Please complete anonymous feedback survey (link
in Blackboard announcement)

Project 1 grades and solutions posted

Project 2 will be posted by Friday; due Feb 26

LOOSE END
Let's implement the paper folding sequence
recursively.

COOL FACT
If you use the infinite paper folding sequence as the
binary digits of a real number (starting at place and
moving right), you get the paper folding constant.

It is irrational. In 2007 it was shown1 that this constant
is furthermore transcendental, i.e. cannot be
expressed in terms of square roots, cube roots, or any
solutions of polynomials with rational coefficients.

1
2

PFC = (0.11011001110010011101100 …)2

= 0.85073618820186 …

1 Adamczewski and Bugeaud, On the complexity of
algebraic numbers I: Exapansions in integer bases,
Annals of Mathematics 165 (2007) 547-565.

https://adamczewski.perso.math.cnrs.fr/ComplexityI.pdf
https://adamczewski.perso.math.cnrs.fr/ComplexityI.pdf
https://adamczewski.perso.math.cnrs.fr/ComplexityI.pdf

STACK OVERFLOW
Recursive functions are limited by a maximum call
stack size.

Python imposes a limit to prevent the memory area
used to store the call stack from running out (a stack
overflow), which would abruptly stop the interpreter.

ITERATIVE SOLUTIONS
Let's write iterative versions of factorial, Fibonacci, and
paper folding. (Or as many as time allows.)

TIMING COMPARISON
How do iterative and recursive versions compare on
speed?

I made a module decs contains a decorator called
timed that prints the time a function takes to return.

QUESTION
Why is recursive fact() somewhat competitive, but
fib() is dreadfully slow?

Decorator decs.count_calls will keep track of
number of function calls.

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FACT CALL GRAPH

FIB CALL GRAPH

FIB CALL GRAPH

MEMOIZATION
fib computes the same terms over and over again.

Instead, let's store all previously computed results,
and use the stored ones whenever possible.

This is called memoization. It only works for pure
functions, i.e. those which always produce the same
return value for any given argument values.

math.sin(...) is pure; time.time() is not.

MEMOIZED FIB CALL GRAPH

MEMOIZED FIB CALL GRAPH

FIBONACCI TIMING SUMMARY
n=35 n=450

recursive 1.9s > age of universe

memoized recursive <0.001s 0.003s

iterative <0.001s 0.001s

Measured on a 4.00Ghz Intel i7-6700K CPU (2015
release date) with Python 3.8.5

MEMOIZATION SUMMARY
Recursive functions with multiple self-calls often
benefit from memoization.

Memoized version is conceptually similar to an
iterative solution.

Memoization does not alleviate recursion depth limits.

REFERENCES
, available as a free PDF, discusses some examples of recursion

in Chapter 1.

Lutz discusses recursive functions in Chapter 19 (pages 555-559 in the print edition).

 by Deitel and Deitel discusses
recursion in Chapter 11. The online version of this text is freely available to UIC students,
faculty, and staff. (You will first need to with you UIC email.)

The open textbook discusses recursion in
.

Computer Science: An Overview by Brookshear and Brylow discusses recursion in Section
5.5. (This book is often an optional text for MCS 260.)

REVISION HISTORY
2021-02-10 Add reference for transcendence of
2021-02-10 Initial publication

Algorithms by Jeff Erickson

Intro to Python for Computer Science and Data Science

log in

Think Python, 2ed, by Allen B. Downey Sections
5.8 to 5.10

PFC

https://jeffe.cs.illinois.edu/teaching/algorithms/
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
https://www.safaribooksonline.com/library/view/temporary-access/?orpq
http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62

