
LECTURE 11
THE PYTHON DEBUGGER

MCS 275 Spring 2021
Emily Dumas

LECTURE 11: THE PYTHON DEBUGGER
Course bulletins:

Project 1 due today at 6pm CST.

Next week we begin a more theoretical unit
(recursion). Check course web page for supplemental
reading suggestions.

THE IDEA OF A DEBUGGER
Suppose a Python program has a bug.

Wouldn't it be nice if you could run the program slowly,
monitoring values of variables along the way?

PDB
The built-in Python debugger, called pdb, makes this

possible. Key features:

Single-step through a program
Inspect values of variables
Run normally until a certain line is reached
Analyze an exception that is about to end the
program.

RUNNING PDB

Runs myprogram.py with command line arguments

["alpha","beta",3], but in the debugger.

The program starts in a paused state, and a prompt is
shown where we can enter commands (to resume, run a
single line, show values of variables, etc.)

python -m pdb myprogram.py alpha beta 3

PDB BASICS
Running the program:

c or continue -- Start or continue running the
program, i.e. "unpause".
s or step -- Start execution but stop as soon as
possible. If a function is called, move to the first line
of that function.
n or next -- Start execution and stop when the next
line of the current function is reached. (If the current
line calls other functions, wait for them to return.)
r or return -- Start execution and stop when the
current function returns.

Inspecting the situation:

l or list -- Show a passage of source code that
includes the current line.
ll -- Show the entire contents of the file containing
the current line.
pp EXPR -- Evaluate EXPR and display the result

nicely ("pretty print")
display EXPR -- Every time execution is paused,

show the value of EXPR if it has changed.

BREAKPOINTS
Rather than single-stepping, it is often helpful to keep
running until a certain part of the code is reached.

A place where execution is supposed to stop and return
control to the debugger is a breakpoint.

b FILE:LINE_NUM -- Set breakpoint by line.

b FUNCTION_NAME -- Set a breakpoint by function

name.
cl -- Clear all breakpoints.

POST MORTEM
If an uncaught exception occurs when a program is
running in pdb, the debugger pauses at the moment of

the exception to let you investigate.

This is called a "post mortem" (after death)
investigation of the program. You can't continue or step,
but you can examine the values of variables, etc.

MOVING AROUND THE TRACEBACK
What if f() calls g(), and you are paused inside g but

want to know the value of a local variable of f?

u or up -- Move one step up the traceback, to the

function which called this one.
d or down -- Move one step down the traceback, to

the function which called this one.
w or where -- Show the current traceback.

REFERENCES
pdb is not discussed in any depth in the optional texts.

This is nice.

REVISION HISTORY
2021-02-07 Add "where" command
2021-02-05 Initial publication

The official pdb documentation

Tutorial on the Python debugger by Lisa Tagliaferri at DigitalOcean

https://docs.python.org/3/library/pdb.html
https://www.digitalocean.com/community/tutorials/how-to-use-the-python-debugger

