
LECTURE 10
ERRORS AND DEBUGGING

MCS 275 Spring 2021
Emily Dumas

LECTURE 10: ERRORS AND DEBUGGING
Course bulletins:

Project 1 due Friday at 6pm CST.

Project 1 autograder is available.

PLAN
We're starting a short unit on debugging.

Today we'll talk about interpreting error messages,
and basic methods to fix them.

DEBUGGING
Any difference between the expected and actual
behavior of a program is an error or bug. Some bugs
stop the program's execution. In other cases the
program proceeds (but does the wrong thing).

The process of finding and fixing errors in computer
programs is called debugging.

Today we mostly focus on debugging errors that cause
a program to stop.

LINES IN PROGRESS
Functions can call other functions, so at any moment
the Python interpreter may have a number of function
calls in progress.

e.g. in the program above, when line 3 runs, the
function called on line 4 is in progress.

def f(x):

 """Return the square of `x`"""

 return x*x

print("The square of 8 is",f(8))

1

2

3

4

CALL STACK
The function calls currently underway are stored on
the call stack, a data structure maintained by the
interpreter.

The top of the stack is the function actively running;
the others are waiting on this one to finish.

Just below the top is the function that called the one
currently running, and so forth.

UNCAUGHT EXCEPTIONS
The Python interpreter raises exceptions to signal
unexpected conditions. Programs can also raise
exceptions themselves.

Unless caught by a try...except block, raising an
exception ends the program.

When exiting due to an exception, Python prints a
summary of what happened, called a traceback.

Tracebacks contain lots of useful information about
what went wrong, including the call stack.

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

WHAT'S NOT IN A TRACEBACK
Argument values for each function call

Values of variables involved in any of the lines
shown

Information about when the exception was raised
(e.g. the first iteration of the loop? the 500th?)

GOAL IN READING A TRACEBACK
Determine where the code's meaning doesn't match
the programmer's intentions.

Usually a change is needed near one of the lines in the
traceback... but which one?

HOW TO USE A TRACEBACK
Generally, read from bottom to top

Make note of the exception type

Scan the files listed for ones you wrote

Of those, open the one closest to the bottom in an editor and go
to the line in question

Try to develop error hypothesis consistent with the exception

Read for relevant functions

Look at higher entries for additional context

Move up the traceback if you're stuck

Python docs

https://docs.python.org/3/library/index.html

SOME BUILT-IN EXCEPTION
TYPES

IndexError - Item requested by integer index does not exist

KeyError - A dictionary was asked for a key that doesn't exist

SyntaxError - Execution couldn't even start because the program's text is not
valid Python code.

ImportError or ModuleNotFoundError- The requested module could not be
imported (or a requested name wasn't in the module, if using from)

OSError and - The OS was asked to do something, but it failed;
includes many file-related errors (e.g. file not found, directory found where
file needed, permission problems, ...)

["a","b"][15]

{"a": 260, "b":330}["autumn"]

its subclasses

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

DEBUGGING STRATEGIES
So far: Read-only debugging methods (no code
changes to assist the process)

Reality: Debugging is hard. Tracebacks alone o�en
don't give enough information.

Various debugging strategies can be used to help
identify and fix problems.

PRINT DEBUGGING
One of the oldest debugging strategies is to add extra
output to a program that shows important internal
state up to the moment of an error.

E.g. print values of arguments and variables just
before the line causing an exception.

Disadvantage: Generally need to remove all those
scattered print() calls when you're done
debugging.

PRINT DEBUGGING REPUTATION
Print debugging is o�en criticized as the refuge of
those who don't know any better.

We'll talk about another method next time, so you will
know better!

But the simplicity and directness of simply printing
more program state is o�en compelling.

Brian Kernighan (Unix co-creator) called print
debugging the “most effective debugging tool” in 1979,
and it remains popular more than 40 years later.

REFERENCES
Lutz has a very short discussion of debugging methods at the end of Chapter 3.

Beazley & Jones discusses some debugging methods in Section 14.12.

REVISION HISTORY
2021-02-03 Initial publication

Hierarchy of Python's built-in exceptions

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

