
LECTURE 9
FUNCTIONS
MCS 260 Fall 2021

Emily Dumas

REMINDERS
Project 1!

Due Friday 6pm

Submissions open now

Autograder enforces project description strictly;
use its report to fix minor formatting issues

Worksheet 4 coming today

We have seen lots of functions: , ,
, , , ...

These are built-in functions, provided by Python. They
do useful things, sometimes using data you provide,
and sometimes returning a value.

It is also possible to create your own functions.

input() print()
float() len() enumerate()

Syntax for a function definition:

The are parameters.

Syntax for calling a function:

The are arguments. The statements in the
function body will run with ,

,

def function_name(param0, param1, ...):

 statement

 ...

 statement

 return value

parami

function_name(arg0, arg1, ...)

argi

param0=arg0

param1=arg1

STRING METHODS

(We'll discuss more of these soon.)

 s = "Chapter 11"

 print(s.lower()) # chapter 11

 print(s.upper()) # CHAPTER 11

Example: Write a function input_yes_no() that is
like input() but only accepts yes or no.

Make it flexible enough to accept yes, no, y, n, with any
capitalization.

Regardless of how user enters their answer, the return
value should be either "yes" or "no".

Now we can use this e.g. as:

def input_yes_no():

 while True:

 s = input() # Read string from keyboard

 s = s.lower() # Make all lower case

 if s in ["y","yes"]:

 s = "yes"

 break

 elif s in ["n","no"]:

 s = "no"

 break

 else:

 print("Please enter y/yes or n/no.")

 return s

print("Set all quiz scores to 100?")

if input_yes_no() == "yes":

 for i,student in enumerate(roster):

 scores[i] = 100.0

A return is not required; a function can perform tasks
without returning a value.

A return can appear anywhere in the function body to
return to the caller immediately.

def input_yes_no2():

 """

 Read yes/no from keyboard, allowing single letter or full

 word answers. Returns one of the strings "yes" or "no".

 """

 while True:

 s = input() # Read string from keyboard

 s = s.lower() # Make all lower case

 if s in ["y","yes"]:

 return "yes"

 elif s in ["n","no"]:

 return "no"

 else:

 print("Please enter y/yes or n/no.")

PARAMETERS
Parameters allow a function to accept and use data.
The syntax is a list of names in parentheses after the
function name. Example:

Now if we call , the body of the
function runs with and .

These are called positional arguments, as they
correspond to parameters by position.

def trim(s, maxlen):

 """Return the initial segment of sequence s,

 consisting of at most `maxlen` items."""

 return s[:maxlen] # Works even if s is short!

trim("picnic",3)

s="picnic" maxlen=3

Parameters can be given default values:

When calling a function, arguments can be given
positionally, or by name. The latter are keyword
arguments.

def increase(x, addon=5): # Note the default value for addon

 "Return the sum of `x` and `addon` (defaults to 5)"

 return x+addon

increase(3) # result is 8

increase(3,addon=1) # result is 4

increase(addon=2,x=3) # result is 5

increase(addon=2,11) # ERROR: pos. args must be first

increase(addon=2) # ERROR: arg without default omitted

REFERENCES
In :

 and both discuss functions, though the latter has a lot of material
we didn't cover today (e.g. recursion)

ACKNOWLEDGEMENT
Some of today's lecture was based on teaching materials developed for MCS 260 by

.

REVISION HISTORY
2021-09-13 Initial publication
2021-09-14 Moved unused slides forward to Lecture 10

Downey
Chapter 3 Chapter 6

Section 13.5 discusses keyword args

Jan
Verschelde

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2004.html
http://greenteapress.com/thinkpython2/html/thinkpython2007.html
http://greenteapress.com/thinkpython2/html/thinkpython2014.html#sec156
http://homepages.math.uic.edu/~jan/
http://homepages.math.uic.edu/~jan/

