LECTURE 8

LIST METHODS AND
COMPREHENSIONS

MCS 260 Fall 2021
Emily Dumas

REMINDERS

e Worksheet 3 solutions posted
e Homework 3 posted (due Tues 10am)

e Project1dueFriSep 17 at6pm CDT

PROJECT 1 DISCUSSION

321,174,258, 385, 448, 480,496, 612,414, ...

ITERABLES

Recall a thing that can appear in a for loop in Python is
called aniterable. So iterables include:

e Sequences (strings, lists, tuples®)
e range(...),enumerate(...)
e Other built-in types we'll discuss soon (dict, set)

LIST METHODS

Lists in Python have many useful features we haven't
talked about.

Any list, say L, comes with its own set of functions
(called methods) that operate directly on the list.

L.append (x) # Add x to the end of the list
L.insert(i,x) # Insert x at position i

L.remove (x) # Remove first instance of x in L
L.pop () # Remove and return the last item of L
L.index (x) # Find x in L, return its index

All except index () change the list.

Example: Suppose L is a list of strings representing
integers, and we need to convertitto a list M of ints.

A for loop can be used to do this:

(42", "1le", "15", "8", "4"]
[]
r s in L:
M.append(int(s))
now M == [42, 16, 15, 8, 4]

L
M
fo

This pattern is very common: Iterate over a list doing
something to each element, producing a new list.

This pattern is so common that Python has a more
compact way of writing it. The code:

M= []
for s in L:
M.append(int(s))

Can instead be written:

M = [int(s) for s in L]

Theexpression[... for ... in ...]is
called a list comprehension. It is a compact way of
writing a common type of for loop.

COMPREHENSION EXAMPLES

The basic comprehension syntax is:

[expression for varname 1n iterable]

For example:

Lo

x**2 for x 1in range(5)]
Gives [0, 1, 4, 9, 16]

L |

s[l:] for s 1in ["cat", "spot", "blot"]]
Gives ["at", "pOt", "lot"]

|}

float(s[:-1]) for s in ["oC", "12.5C", "25C"]]
Gives [6.0, 12.5, 25.0]

The variable name in a comprehension can be
anything, it just needs to be used consistently.

These are all equivalent:

[x**2 for x in range (5)]
[t**2 for t in range(5)]
[apple**2 for apple in range(5)]

The name in a comprehension is not assigned to
anything outside the comprehension:

>>> [x**2 for x 1n range(5)]
[0, 1, 4, 9, 16]
>>> X

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'x' 1s not defined

FILTERING

There is another common type of for loop, where
elements are not just transformed but also filtered.

words = ["alpha", "bridge", "assemble", "question"]
a words = []
for s 1in words:
if s[0] == "a":
a words.append(s)
Now a words is ["alpha", "assemble"]

This too can be done in a comprehension:

a words = [s for s in words if s[0]=="a"]

The general form is

[expression for name 1in iterable 1f condition |

FILTERING EXAMPLES

Consider:;

[xtx**2 for x 1n range(b) 1f x!=2]

In words: Start with the integers 0. . . 4, consider only
the ones that are not equal to 2, and for each of those,
add the number to its square. Make a list of the results.

range (5) gives [0, 1, 2, 3, 4]

!=2 gives [0, 1, 3, 4]

add to square gives [04+0, 1+1, 349, 4+16]
Final result:

[0, 2, 12, 20]

A list of lists of names and salutations:

namepalirs = [["Mr.","Nabil Weber"],
["Ms.","Janet Leon"],
["Ms.","Mariana Wang"],
["Dr.","Lisa Young"]]

Tip: as we do here, lists can be split between lines.
Indenting is not required.

What if we want a greeting (as salutation name) of the
people with salutation "Ms."?

[sal+" "+name for sal,name 1in namepairs if sal=="Ms."]
Gives ["Ms. Janet Leon","Ms. Mariana Wang"]

Equivalent for loop:

mss = []
for sal,name 1n namepairs:
1f sal=="Ms.":
mss.append (sal+" "+name)

Convert every digit from the input string to an int, and
make a list of these:

[1nt(c) for ¢ in 1nput() 1f c 1n "0123456789"]

If the keyboard input is

I like O more than 157, thenthe above will
evaluate to

[0, 1, 5, 7]

REFERENCES

e In Downey:.
= Section 19.2 discusses list comprehensions

REVISION HISTORY

e 2021-09-09 Initial publication

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2020.html#sec224

