
LECTURE 7
STRINGS AND INTEGERS

MCS 260 Fall 2021
Emily Dumas

REMINDERS
Worksheet 3 available

Project 1 description posted

BYTES
We've discussed the bit (b) or binary digit (0 or 1).

A byte (B) is a sequence of 8 bits, equivalently, an 8-
digit binary number or a 2-digit hex number. It can
represent an integer between 0= and 255= .

Computers store information as sequences of bytes.

0x00 0xff

UNICODE
Basic problem: How to turn written language into a
sequence of bytes?

Unicode (1991) splits this into two steps:

Make a central directory of characters of most
written languages; these are code points

Specify ways to encode code points into sequences
of bytes (not discussed today)

Every code point has a number (an integer between 0
and 0x10ffff=1,114,111).

Code point numbers are always written followed
by hexadecimal digits.

A

ĉ

😒

The first 128 code points, U+0 to U+7F, include all "en-
us" keyboard keys, and follow the ASCII code (1969).

U+

U+41

U+109

U+1f612

STRINGS
In Python 3, a str is a sequence of code points.

Several syntaxes are supported for literals:
'Hello world' # single quotes

"Hello world" # double quotes

multi-line string with triple single quote

'''This is a string

that contains line breaks'''

multi-line string with triple double quote

"""François: How is MCS 260?

Binali: It's going ok. Too many slides.

François: ¯_(ツ)_/¯"""

ESCAPE SEQUENCES
The character has special meaning; it begins an
escape sequence, such as:

 - the newline character
 - a single quote
 - a double quote
 - a backslash

 - Code point
 - Code point

(There is a)

Note appears a lot in Windows paths!

\

\n

\'

\"

\\

\u0107 U+107

\U0001f612 U+1f612

full list of escape sequences.

\

https://docs.python.org/3/reference/lexical_analysis.html#index-21

>>> print("I \"like\":\n\u0050\u0079\u0074\u0068\u006f\u006e")

I "like":

Python

>>>

OPERATIONS ON STRINGS
Most arithmetic operations forbid strings. Exceptions:

 joins strings, e.g. "cat"+"erpillar"
 joins a specified number of copies, e.g. "doo"*6

+

*

>>> "Hello" + " " + "world!"

'Hello world!'

>>> "Hello" - "llo"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

>>> "Ha" * 4

'HaHaHaHa'

>>> prefix = "Dr. "

>>> fullname = "Ramanujan"

>>> prefix+fullname

'Dr. Ramanujan'

SEQUENCE STUFF
Reminder: Like lists, strings are sequences.

You can use indexing to get individual characters,
slices to get substrings, and len(...) to get the
length.

STR
Python's str() function converts any other value to
a string, e.g.

str() is rarely needed, but it does give a way to
access decimal digits of an integer individually.

>>> str(5678)

'5678'

>>> str(5678)[1]

'6'

>>> int(str(5678)[1])

6

INT
When converting from a string, defaults to base

. But it supports other bases as well. The base is
given as the second argument of the function.

Integer literal prefixes you'd use in code (, , etc.)
must not be present here. The function works
with just digits when you specify the base.

int()

10

>>> int("1001",2)

9

>>> int("3e",16)

62

0b 0x

int()

However, if a base of is specified, then this signals
that the string should be read as a Python literal, i.e.
the base is determined by its prefix.

0

>>> int("0b1001",0)

9

>>> int("0x3e",0)

62

>>> int("77",0)

77

BITWISE OPERATORS
There are certain operators that only work on ints, and
which are based on the bits in the binary expression:

left
shift

right
shift

bitwise
AND

bitwise
OR

bitwise
XOR

<< >> & | ^

 moves the bits of left by positions.

 moves the bits of right by positions.
(This detroys the lowest bits of .)

Notice is equivalent to .

a << b a b

a >> b a b

b a

>>> 9 << 3 # 9 = 0b1001 becomes 0b1001000 = 72

72

>>> 7 << 1 # 7 = 0b111 becomes 0b1110 = 14

14

>>> 9 >> 2 # 9 = 0b1001 becomes 0b10

2

a << b a * 2**b

Bitwise AND compares corresponding bits, and the
output bit is if both input bits are :

1 0 0 1

0 1 0 1

AND: 0 0 0 1

1 1

>>> 9 & 5 # 9 = 0b1001, 5 = 0b0101

1

Bitwise OR is similar, but the output bit is if at least
one of the input bits is .

1 0 0 1

0 1 0 1

OR: 1 1 0 1

1

1

>>> 9 | 5 # 9 = 0b1001, 5 = 0b0101

13

Bitwise XOR makes the output bit if exactly one of
the input bits is .

1 0 0 1

0 1 0 1

XOR: 1 1 0 0

1

1

>>> 9 ^ 5 # 9 = 0b1001, 5 = 0b0101

12

LOGIC GATES
Circuits that perform logic operations on bits, logic
gates, are fundamental building blocks of computers.

Thus the Python operators , , , , are especially
low-level operations.

<< >> & | ^

 CC-BY-SA 3.0

This chip (or integrated circuit / IC) contains four AND
gates built from about transistors. The processor in
an iPhone 11 has about transistors.

74LS08PC photo by Trio3D

50

8,500,000,000

https://commons.wikimedia.org/wiki/File:Fairchild_Semiconductor_74LS08PC.png

REFERENCES

In : Strings are discussed in and

The int() feature of converting from strings in other bases is also discussed in the
.

Bitwise operations and logic gates are discussed in sections 1.1 and 2.4 of
.

REVISION HISTORY
2021-09-08 Initial publication
2021-09-09 Fix typo

Official Unicode code point charts
Downey Section 2.6 Chapter 8

Bitwise operations in the Python 3 documentation
Python 3

documentation
Brookshear &

Brylow

https://unicode.org/charts/
http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2003.html#sec21
http://greenteapress.com/thinkpython2/html/thinkpython2009.html
https://docs.python.org/3/library/stdtypes.html?highlight=bitwise#bitwise-operations-on-integer-types
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.pearson.com/us/higher-education/program/Brookshear-Computer-Science-An-Overview-13th-Edition/PGM1949505.html
https://www.pearson.com/us/higher-education/program/Brookshear-Computer-Science-An-Overview-13th-Edition/PGM1949505.html

