
LECTURE 6
FOR AND WHILE LOOPS

MCS 260 Fall 2021
Emily Dumas

REMINDERS
No class Monday

Homework 1 scores & Worksheet 2 solutions posted

Homework 2 available, due next Wed at 10am
(schedule change due to Labor day)

Homework 2 autograder only checks syntax, and is
only advisory (no points). Actual grading will be
manual.

WHILE LOOPS
The syntax

will repeatedly do the following:

1. Evaluate condition; if False, skip the rest of this list
and move on. Otherwise,

2. Execute the statements in the block.
3. Return to the first step.

Called a loop because it returns to a previous line.

while condition:

 statement

 statement

The code block following a while is called the body of
the loop.

Most while loops will change a variable in the body,
affecting the condition.

This prints the numbers from 1 to 5.

n = 1

while n <= 5:

 print(n)

 n = n + 1

print("All done.")

FLOW OF EXECUTION

INFINITE LOOPS
It's possible to write a while loop that will never end,
e.g.

Such accidental infinite loops cause a program to
appear to be stuck.

Control-C will interrupt and exit a stuck Python
program.

n = 1

while n <= 5:

 print("ESB is the best Star Wars film")

FOR LOOPS
The syntax

can be used with any sequence as container.

It takes an item from container, assigns it to the
variable varname, runs the loop body, and then
repeats the whole process until each element of
container has been used exactly once.

for varname in container:

 statement

 statement

EXAMPLE
Let's write a program that will read a string from the
user and classify each character into one of the
categories:

digit (0,1,2,3,4,5,6,7,8,9)
space ()
other (e.g. A-Z,a-z,...)

EXITING A LOOP
Sometimes it is helpful to exit a loop before it would
end on its own, or from the middle of the body.

The break statement does this. When it executes, the
immediate surrounding loop stops and control goes to
the first statement a�er that loop.

n=1

while True:

 n = n + 1

 if n > 9:

 break

print(n)

ITERABLES
Besides lists and strings, some other containers are
allowed in for loops.

A thing allowed in a for loop is called an iterable.

Some iterables generate their items one by one, rather
than computing everything in advance.

RANGE
 is an iterable that generates the integers

from to .
range(N)

0 N − 1

for n in range(10):

 print(n+1)

The following is slow, as it creates a list of 50 million
items:

Better way:

This is very fast (only 12 items generated).

L = list(range(50_000_000))

for x in L:

 # do stuff with x

 # possibly exit the loop early

for x in range(50_000_000):

 print(x)

 if x > 10:

 break

ENUMERATED ITERATION
What if you need the index during a for loop?

This method works, but is not recommended:
L = [9,8,2,4,1,1,5]

for i in range(len(L)):

 print("At index",i,"we have item",L[i])

Another way:

Use an extra index variable, increment it manually.
L = [9,8,2,4,1,1,5]

i = 0

for x in L:

 print("At index",i,"we have item",x)

 i = i + 1

Best way:

Use the function. It turns a sequence
like into an enumerated sequence

.

enumerate()
[7,6,5]

[(0,7), (1,6), (2,5)]

L = [9,8,2,4,1,1,5]

for i,x in enumerate(L):

 print("At index",i,"we have item",x)

AVOID RANGE(LEN())
When you see

in Python code, it should usually be replaced with

or

for i in range(len(L)): # not recommended!

 # do stuff with L[i]

for x in L:

 # do stuff with x

for i,x in enumerate(L):

 # do stuff with x and/or i

For and while loops allow you to write programs that
process a collection of data / events / etc.

If/elif/else allow processing to be customized to the
data.

Together these constructs give a lot of control over
program execution.

REFERENCES
In :

 is devoted to a detailed discussion of loops
 and contain additional examples of for loops.

REVISION HISTORY
2020-09-02 Initial publication

Downey
Chapter 7
Section 8.3 Section 10.3

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2008.html
http://greenteapress.com/thinkpython2/html/thinkpython2009.html#sec94
http://greenteapress.com/thinkpython2/html/thinkpython2011.html#sec116

