
LECTURE 41
THE SUBPROCESS MODULE

MCS 260 Fall 2021
Emily Dumas

REMINDERS
Project 4 is due Friday at 6pm central.

Homework 14 due tomorrow 10am. It's the last one.

Worksheet 15 is available.

Regular lab schedule this week.

SUBPROCESS
Python's subprocess module contains functions for
starting and managing processes, i.e. asking the OS to
run other programs.

subprocess.run(args) runs command args.

args can be a string or a list of strings (the command
line arguments).

import subprocess

subprocess.run("explorer.exe") # windows

subprocess.run("ls") # linux / macOS

WHAT RUN() DOES
Starts an external process from the given command.

(By default, the new process can accept input and
write output to the terminal.)

Wait for process to end.

Return object with info about the process.

Common options for run() and default values

check=False — If True, raise an exception if
process reports an error when it exits.
shell=False — If True, first start a new shell and
then ask the shell to run the program.
cwd=None — If not None, sets the working
directory of the new process.
timeout=None — If a positive number, only allow
the process to run for timeout seconds. If it
exceeds this, terminate it and raise an exception.

EXIT STATUS
When a process ends, it can provide an integer code to
whatever process started it.

This exit status (also known as exit code or return
code) is sometimes used to report errors.

0 indicates success
Non-zero values indicate error; in some cases the
specific number gives info about the error

The object returned by run() has a .returncode
attribute.

SIDE NOTE: EXIT()
Python's exit() function accepts an integer
argument, which sets the exit status.

If not given, the default is 0.

exit(0) or exit() — exit normally
exit(1) — exit indicating an error

IO REDIRECTION
The capture_output argument of run() is a
boolean indicating whether the output of the process
should be captured and returned.

If output is captured, it is placed in the .stdout and
.stderr attributes of the return object.

The input argument of run() specifies input (as
bytes) to be sent to the process, instead of allowing it
to read from the terminal. This can be used to simulate
keyboard input.

WHEN TO USE SUBPROCESS
Your program needs to do something, and an external
program exists that can handle it.

This is more common on Linux and MacOS where there
are lots of command line utilities.

Common applications:

Opening a web browser or file editor
Calling converters or compressors
Running so�ware development utilities like git

WHEN TO AVOID SUBPROCESS
If you want to simulate a full keyboard interaction with
a program (input, wait, review output, decide, more
input, ...), use a module like instead.

If the target program is written in Python, the
functionality you need may be available as an
associated module. If so, it is usually better to use the
module directly.

pexpect

https://pexpect.readthedocs.io/en/stable/

SECURITY
Never pass untrusted input data as part of a call to
subprocess.run(). Doing so will make your
program a stepping stone to breaking computer
security.

Using shell=True should also be avoided if
possible. A single shell command can start multiple
processes, and attackers can exploit this.

POPEN
We covered the function-oriented interface using
subprocess.run(). There is also an object-
oriented interface.

subprocess.Popen(...) builds and returns an
object representing an external process.

This constructor returns immediately, allowing your
program to proceed concurrently with the external
process.

POPEN OBJECTS
Methods of the subprocess.Popen object:

poll() — returns return code if process is done, or
returns None if it is still running
wait() — waits until the process exits, similar to
threading.Thread.join()

terminate() — end the process

REFERENCES
Python module documentation:

 by David Muller at DigitalOcean

REVISION HISTORY
2021-11-29 Initial publication

subprocess
Subprocess module tutorial

https://docs.python.org/3/library/subprocess.html
https://www.digitalocean.com/community/tutorials/how-to-use-subprocess-to-run-external-programs-in-python-3

