
LECTURE 37
DATES AND TIMES

MCS 260 Fall 2021
Emily Dumas

REMINDERS

Project 3 solution posted, grades soon
Homework 13 coming tomorrow, due Tue 23 Nov
Homework 14, due Tue 30 Nov, will be the last one
No labs next week (23, 25 Nov)
Lab times on 23 Nov become TA office hours
Kylash also has extra office hours next week
No synchronous lecture on Wed 24 Nov
Worksheet 15 and lab 15 will happen!

TIME
Python's time module can tell you the current

timestamp, i.e. the time in second since a certain base
point, the epoch. It can also do some other things.

The epoch is usually 0:00 on January 1, 1970 (GMT),
but officially it can be different in each Python
installation.

time.time() — return current timestamp (float).

time.gmtime(0) — return some data about the epoch for this

Python installation.
time.sleep(seconds) — pause execution for seconds

seconds.

TIME
The main thing I think the time module is good for is

measuring the elapsed time between two events, e.g.

Keep in mind this measures "wall clock" time, not the
total CPU time spent doing actual work.

import time

t0 = time.time()

for x in huge_list:

 complicated_function(x)

t1 = time.time()

print("That took {:.2f} seconds".format(t1-t0))

DATETIME
Module includes class datetime.datetime for

representing a Gregorian calendar time as month, day,
hour, minute, second, microsecond.

datetime.datetime.now() — The current local

time (as reported by the OS)
datetime.datetime.utcnow() — The current

time in UTC (equal to GMT)
datetime.datetime(2021,8,23,10,3,27) —

object representing 27 seconds after 10:03am on
Aug 23, 2021

There are also datetime.date objects, representing

dates in the Gregorian calendar, and datetime.time

objects, representing a time of day.

These have similar behavior, so we will focus on
datetime.datetime.

TIME ZONE HANDLING
Everything we've covered so far uses naive datetime
objects, not labeled by a specific time zone.

Real world applications typically need to account for
time zones (and their complexity).

We won't cover this in MCS 260 but I want to suggest:

If you need to work with time zones in Python, know
that built-in support for this is limited.
There are a number of add-on modules that can make
time zone handling easier.

STRING TO DATETIME
The datetime module can take a string and convert it to
a datetime object, which is one of its most powerful
features.

datetime.datetime.strptime(date_string,format) —

Convert a string to a datetime, assuming it uses the format
described in format (%-codes indicate datetime parts).

datetime.datetime.strptime("2021-12-03","%Y-%m-

%d") — Parse a year-month-day string and make a datetime object

out of it.

Format codes for strptime include (see):

%Y = year

%m = month (two digit)

%B = full month name

%d = day (two digit)

%A = weekday name (e.g. Friday)

%a = weekday abbreviation (e.g. Fri)

%H = hour (two digit, 24 hour format)

%I = hour (two digit, 12 hour format)

%M = minute (two digit)

%S = second

%p = AM/PM

full list

https://docs.python.org/3/library/time.html#time.strftime

DATETIME TO STRING
If dt is a datetime object:

dt.strftime(format) — converts dt to a string

in the given format.

DATETIME ⇆ TIMESTAMP
If dt is a datetime object:

datetime.datetime.fromtimestamp(ts) —

Convert from a timestamp to a local date and time
dt.timestamp() — Convert from datetime to a

timestamp

COMPARISON
For datetime objects, the comparison operator < means

"is earlier in time than".
datetime.datetime(1999,11,19) < datetime.datetime.now() # True!

TIMEDELTA
Subtracting two datetime objects gives a
datetime.timedelta object.

datetime.timedelta(days=0, seconds=0,

microseconds=0, milliseconds=0, minutes=0,

hours=0, weeks=0) — build a new timedelta object

delta.total_seconds() — convert an existing timedelta

object to units of seconds

Internally, timedelta stores days, seconds, and
microseconds. It supports division by other timedelta
objects, and multiplication/division by numbers.

RECOMMENDATIONS
For past events, store timestamp or UTC datetime
Convert to a datetime object when displaying
For future events, it's really complicated! (e.g. what if
time zone rules change between now and then?)

DATEUTIL
 is another module not in the standard

library that is often used for handling dates and times in
Python.

(Ask pip to install python-dateutil.)

A nice feature of dateutil is that it has a function

dateutil.parser.parse(s) to make a "best

guess" at the meaning of a date string sof unknown

format.

dateutil

https://dateutil.readthedocs.io/en/stable/

REFERENCES

REVISION HISTORY
2021-11-17 Initial publication
2021-11-17 Corrected typos

datetime module official docs
pytz docs
dateutil docs

https://docs.python.org/3/library/datetime.html
http://pytz.sourceforge.net/
https://dateutil.readthedocs.io/en/stable/

