LECTURE 33 Network architecture

MCS 260 Fall 2021 Emily Dumas

REMINDERS

- Homework 11 due tomorrow at 10am central
- Central time is now GMT-6
- Worksheet 12 available
- Project 4 description coming Wed, will involve topic selection. Will have 7 days to choose topic.
- No synchronous lecture Fri; will post lecture video instead

NETWORKING

A computer network is a group of computers that are connected to one another in a way that allows them to exchange data.

There is a vast worldwide computer network called the **internet** to which we are all connected right now.

SAMPLE INTERACTION

I open a web browser, enter

http://example.com/

and press Enter. Soon, a web page is displayed.

Today we'll discuss the layers of networking technology that are used in this process.

First we need some additional concepts and terminology.

NETWORK CONCEPTS

Computers in a network are hosts or nodes.

Each host contains a device to send and receive data over the network. This is a **network interface controller** or **NIC**.

e.g. ethernet adapters (wired) and wifi adapters (wireless) are NICs.

Most modern networks (including the internet) are based on **packets**, i.e. groups of bits that move from one device to another as a unit.

The internet supports many ways to communicate between hosts for different purposes. These are **protocols**, i.e. rules defining how the communication takes place.

Protocols are a relatively high level concept. At a low level, everything comes down to packets that move from one NIC to another.

The string http://example.com/ is a URL or Uniform Resource Locator. It has several parts:

- http the protocol (communication method) to use. Here it is the Hypertext Transfer Protocol (HTTP), which is the primary protocol for the web.
- example.com the name of the host where this resource is located (a web server)
- The / at the end the name of the resource we are requesting from example.com

LOADING EXAMPLE.COM: OVERVIEW

- The name example.com is looked up in a directory, yielding a 4-byte numeric **IP address** like 93.184.216.34 (byte values separated by dots).
- My computer opens a channel to talk to 93.184.216.34 (called a **TCP connection**). The channel is a bit like a file.
- By writing to this channel, my computer asks for "/".
- By reading from this channel, my computer receives the content of the web page (in a language called HTML).

Focus on one step where HTTP is used:

By writing to this channel, my computer asks for "/".

This is a complex operation. Let's dig into the details a bit more.

IN MORE DETAIL

HTTP is a protocol based on sending text commands. The command

GET /

- will ask for the contents of / (which is really
 http://example.com/ since we're talking to
 example.com.)
- So we send this text over the channel.
- This is a complex operation. Let's dig into the details a bit more.

GET / is translated into a packet of data to send to 93.184.216.34. The string itself is in this packet, along with a bunch of control data.

This packet is sent, it passes through a number of intermediate hosts along its way, and it is received by the web server at example.com.

(The web server sends a packet back to acknowledge receipt, so we determine there is no need to resend.)

This is a complex operation. Let's dig into the details a bit more.

A packet needs to go to IP address 93.184.216.34.

The NIC in my computer can only send packets to other NICs on the local network, each of which is identified by a **hardware address** (or MAC).

This IP address is not on our local network. Therefore, we send this packet to the **router**, whose MAC the OS knows.

The router will figure out what to do next (e.g. forward the packet to some other part of the internet).

This is a complex operation. Let's dig into the details a bit more.

We have a packet ready to go to the router.

It is a sequence of bytes, including lots of control data:

11	11	11	11	11	11	22	22	22	22	22	22	8 0	00	45	00	E.
02	49	7e	f8	40	00	40	06	79	с3	0a	00	00	21	5d	b8	.I~.@.@.y!].
d8	22	ba	a4	00	50	90	19	f9	ae	ae	e9	d2	ea	80	18	."P
01	f6	42	2f	00	00	01	01	80	0a	03	1e	08	54	d9	98	B/T
ab	d5						20	48	54	54	50	2f	31	2e	31	GET / HTTP/1.1
0d	0a	48	6f	73	74	3a	20	65	78	61	6d	70	6c	65	2e	Host: example.
63	6f	6d	0d	0a	43	6f	6e	6e	65	63	74	69	6f	6e	3a	comConnection:
20	6b	65	65	70	2d	61	6c	69	76	65	0d	0a	43	61	63	keep-aliveCac
68	65	2d	43	6f	6e	74	72	6f	6c	3a	20	6d	61	78	2d	he-Control: max-
61	67	65	3d	30	0d	0a	44	4e	54	3a	20	31	0d	0a	55	age=0DNT: 1U

The NIC changes the voltage on certain wires of the network cable in a pattern corresponding to the bits of this packet. The router at the other end of the cable monitors these wires and reconstructs the packet.

NETWORK LAYERS

- Application layer: Programs request operations that involve the network in some way.
- **Transport layer**: A communication channel is created between two hosts.
- Network layer: A packet moves from one device to another, possibly passing through many devices along the way. (IP based)
- Link layer: A packet moves from one device to another using a direct connection. (MAC based)
- Physical layer: Voltages on a wire, radio signals, etc.

NETWORK LAYERS IN THIS EXAMPLE

- Application layer: Get http://example.com/ using HTTP.
- Transport layer: The text "GET /" is sent along a TCP channel to example.com.
- Network layer: A packet is sent to IP 93.184.216.34.
- Link layer: My computer's NIC sends a packet to the router's MAC. The router handles the next "hop".
- **Physical layer**: The NIC generates electrical signals on wires in the network cable.

NEXT TIME

Application layer network operations in Python: Making HTTP requests with the urllib module.

REFERENCES

• Section 4.4 in Brookshear and Brylow discusses the layer model for internet protocols. They merge the physical and link layers into a single layer.

REVISION HISTORY

- 2021-11-08 Initial publication
- 2021-11-08 Typos corrected