
LECTURE 30
REGULAR EXPRESSIONS

MCS 260 Fall 2021
Emily Dumas

REMINDERS

Homework 10 due tomorrow at 10am
Worksheet 11 coming this afternoon
Project 3 autograder open
Project 3 due Fri at 6pm

LOOSE END: RECURSION PROS AND CONS
Often can solve a problem with recursion or with loops
(an iterative solution). Why use recursion?

Pros:

Short code
Clear code

Unclear:

Speed

Cons:

Uses more
memory

RAW STRINGS
Recall that backslash \ in a string starts an escape

sequence in Python.

You can disable escape sequences by putting the letter
r immediately before the quotation mark(s). This is

known as a raw string. In a raw string, a single \
represents the \ character.

However, raw strings cannot end with a single \

>>> print("C:\\Users\\ddumas\n(home)")

C:\Users\ddumas

(home)

>>> print(r"C:\\Users\\ddumas\n(home)")

C:\\Users\\ddumas\n(home)

>>> print(r"C:\Users\ddumas")

C:\Users\ddumas

>>>

REGULAR EXPRESSIONS
Today we'll learn about the module re in Python, which

supports a text searching language known as regular
expressions or regexes.

Some of its key functions include:

Searching for text matching a pattern
Replacing text matching a pattern

LANGUAGE SUPPORT
Regexes are a mini programming language for
specifying patterns of text.

Dialects of regex are supported in many programming
languages. We'll cover the Python dialect.

MINIMAL EXAMPLE
Simplest usage: Find and replace a substring.

import re

s = "Avocado is usually considered a vegetable."

print(re.sub("vegetable","fruit",s))

re.sub(pattern, replacement, string)

The �rst argument of re.sub is a pattern.

Unless it contains characters with special meaning in a
regex pattern, the pattern just matches substrings
equal to the pattern.

"vegetable" matches the string "vegetable"

"foo" matches the string "foo"

SPECIAL CHARACTERS IN PATTERNS
. — matches any character except newline

\s — matches any whitespace character

\d — matches a decimal digit

\w — matches a "word character" (a-z, A-Z, 0-9, _)

SPECIAL CHARACTERS FOR REPETITION
+ — previous item must repeat 1 or more times

* — previous item must repeat 0 or more times

? — previous item must repeat 0 or 1 times

{n} — previous item must appear n times

EXAMPLE PROBLEM
Replace any price in whole dollars (written like $2 or

$1999) with the string -PRICE-.

Note: $ is a special character. To match a dollar sign, put

\$ in the pattern.

SEARCHING WITHOUT REPLACING
re.match(pattern,string) — does string

begin with a match to pattern? Return a match

object or None.

re.search(pattern,string) — does string

contain a match to the pattern? Return a match

object or None.

re.finditer(pattern,string) — return an

iterable yielding all the non-overlapping matches as
match objects.

MATCH OBJECTS
Most regex functions return match objects that contain
info about a part of the string matching the expression.

A match object has a method .group() that returns

the full text of the match.

.start() and .end() return the indices where the

match begins and ends in the string.

PARENTHESES
A part of a pattern in parentheses is a group. A group is
treated as a unit for operators like +,*,?.

e.g. pattern (ha)+ means one or more repetitions of

ha.

It matches ha or haha or hahaha but does not match

Haha or h or hah.

In contrast, ha+ means the letter h followed by one or

more repetitions of a, e.g. haaaaaaa

RETRIEVING GROUPS
Matched groups are available as .group(1),

.group(2), etc., with the 1-based number referring to

the order of left parentheses in the pattern.

Group 0 always refers to the entire pattern.

e.g. pattern My name is (\w+). will capture the

name (not containing spaces!) in group 1.

EXAMPLE PROBLEM
Find all of the phone numbers in a string that are
written in the format 319-555-1012, and split each

one into area code (e.g. 319), exchange (e.g. 555), and

line number (e.g. 1012).

REFERENCES
 is a nice web tool to check regex matches (and debug problems)

In :
Regular expressions are not discussed.

 is good as a reference.

 has a unit on regular expressions.
This course was developed for Python 2, so calls to print are lacking parentheses.

Otherwise, the code should work.

REVISION HISTORY
2021-11-01 Initial publication

pythex.org
Downey

The documentation of the re module

Google's free online Python course

https://pythex.org/
http://greenteapress.com/thinkpython2/html/index.html
https://docs.python.org/3.8/library/re.html
https://developers.google.com/edu/python/regular-expressions

