
LECTURE 3
COMMENTS, VARIABLES, INPUT

MCS 260 Fall 2021
Emily Dumas

COURSE BULLETINS
Ask for help ASAP if you don't have Python and
Visual Studio Code working

Worksheet 1 solutions posted

Homework 1 available in Gradescope; due at 10am
Tuesday August 31

COMMENTS
In a line of Python code, anything appearing after a
character is ignored by the interpreter.

The ignored text is a comment. Comments are used to
explanatory text for use by humans.

A comment can take up an entire line, and this is often
used to add a header at the top of a script.

#

print("Hello world!") # TODO: Choose a new greeting

Hello MCS 260 script by Emily Dumas

Written on 2021-08-26

print("Hello world!")

VARIABLES AND ASSIGNMENTS
Variables provide a named place to store values. The
value stored in a variable can be changed later.

To set the value of a variable we use an assignment
statement. The basic syntax is

Example:

name = value

>>> side_length = 5

>>> side_length

5

>>> side_length**2

25

>>> side_length = 6

>>> side_length**2

36

Note: Variable names don't have quotes around them.
"a" = 50 # FAILS: LHS is a value, not a variable name

a = 50 # Works

a = thing # FAILS: thing is an unknown variable name

a = "thing" # Works

b = "uic" # Works, b is now "uic"

b = a # Works, b is now "thing"

print(b) # The current value of variable b

 # appears on the screen

The right hand side of an assignment can be an
expression combining variables, literals, function calls,
and operators. These are evaluated before assignment.

Spaces around are optional.

>>> old_semester_tuition = 4763

>>> semester_tuition = old_semester_tuition * (1 + 11.1/100)

>>> semester_tuition

5291.693

=

Variable name prohibitions:
Must not start with a number
Must not contain spaces
Must not be a Python keyword (, ,)if while …

The Python 3.9 keywords are:
False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

Variable name recommendations:
Use only - , - , - , and (underscore)
Use as a word separator

(The for which characters can appear in
variable names are rather complicated.)

A Z a z 0 9 _
_

class_avg = 93.8 # Works

260avg = 93.8 # FAILS: starts with a number

secret code = 12345 # FAILS: spaces prohibited

secret_code = 12345 # Works

SecretCode = 12345 # Works, atypical style

测试成绩 = "great" # Works, not recommended

exact rules

https://www.python.org/dev/peps/pep-3131/

TYPES
Every object in Python (whether a variable or a literal)
has a type. You can determine the type using the built-
in function :

str means string, a sequence of characters

int means integer

�oat means �oating-point number

type()

>>> type("Hello world!")

<class 'str'>

>>> type(77)

<class 'int'>

>>> type(0.1)

<class 'float'>

DYNAMIC TYPING
In Python, you are free to change the type of a variable
at any time.

Many languages don't allow this!
x = 5 # x is an int

x = 3.14159 # now it's a float

x = "umbrella" # now it's a string

MORE ABOUT PRINTING
The function can accept any number of
values, of any types, in a comma-separated list.

The basic syntax is
.

In the output, values are separated by spaces.

print()

print(val1, val2, val3, ...)

>>> print("The decimal value of binary 1001 is",0b1001)

The decimal value of binary 1001 is 9

>>> print("The sum of",99,"and",0b10,"is",99+0b10)

The sum of 99 and 2 is 101

>>> print(1,1.0,1+0j)

1 1.0 (1+0j)

>>>

INPUT
The function waits for the user to type a line
of text in the terminal, optionally showing a prompt.

Then, the place where was called gets
replaced with the string the user entered.

input()

input()

>>> s = input("Enter some text: ")

Enter some text: organizing heliotrope <--- keyboard input

>>> print("You entered:",s)

Your entered: organizing heliotrope

>>> input()

programming exercises <--- keyboard input

'programming exercises'

>>>

GREETING THE USER
Let's write a program that will ask the user for their
name, and then display a greeting.

ARITHMETIC ON INPUT?
We can't do arithmetic on input directly, because the
input is always a string.

Instead we need to convert input to a numeric type,
using , or .

>>> 5 + input("Enter a number: ")

Enter a number: 10

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

int() float() complex()

>>> 5 + int(input("Enter a number: "))

Input: 10

15

The conversion functions , ,
 can convert from strings to numeric types,

and between numeric types, e.g.

Supported conversions:

input type → str int �oat complex

int() ✓ ✓ ✓integer part ✗

�oat() ✓ ✓ ✓ ✗

complex() ✓picky ✓ ✓ ✓

int() float()
complex()

>>> float(42)

42.0

>>> int(12.9)

12

RECTANGLE AREA AND PERIMETER
Let's write a script to compute the area and perimeter
of a rectangle.

It will ask the user for the dimensions using
and then print the results.

input()

REFERENCES
In : variables and assignment statements are discussed in , conversion
functions (int etc.) in , and keyboard input is covered in .

ACKNOWLEDGEMENTS
Some of today's lecture was based on teaching materials developed for MCS 260 by

.

REVISION HISTORY
2020-08-26 Initial publication.

Downey Chapter 2
Section 3.1 Section 5.11

Jan
Verschelde

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2003.html
http://greenteapress.com/thinkpython2/html/thinkpython2004.html#sec27
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec65
http://homepages.math.uic.edu/~jan/
http://homepages.math.uic.edu/~jan/

