
LECTURE 29
RECURSION

MCS 260 Fall 2021
Emily Dumas

REMINDERS

Work on Project 3 ASAP. Do not delay!
Project 3 autograder opens by Monday.
Homework 10 posted; due Tuesday at 10am.

OOP LOOSE END: PROTOCOLS
We implemented the sequence protocol last time.
There are others.

Still more can be found in the module,
which contains classes you can subclass when
implementing the protocols.

Iterator — creates an iterable
Mapping — creates a dict-like type

collections.abc

https://docs.python.org/3/library/stdtypes.html#iterator-types
https://docs.python.org/3/library/collections.abc.html
https://docs.python.org/3/library/collections.abc.html

RECURSION
A function in Python can call itself. This can be useful,
for example if the result of the function at one
argument is easy to obtain from the result at another
argument.

This technique is called recursion. A function which
uses it is a recursive function.

FACTORIAL
The classic example of recursion (being easiest to
understand) is the computation of factorials:

e.g.

Critical observation:

n! = n × (n − 1) × (n − 2) × ⋯ 2 × 1

5! = 5 × 4 × 3 × 2 × 1 = 120

n! = n × (n − 1)!

RECURSIVE FACTORIAL
Let's build a function fact(n) that uses

 as the basis of its operation.n! = n × (n − 1)!

CALL STACK
Python keeps track of all the function calls that are
underway in a stack. Items on the stack indicate where
the call originated.

Calling a function pushes an item on the stack.

Returning pops an item form the stack.

There is a maximum allowed stack size. Exceeding it is a
stack over�ow.

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30,

 Called fact(2) on line 18

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30,

 Called fact(2) on line 18,

 Called fact(1) on line 18

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30,

 Called fact(2) on line 18,

 Called fact(1) on line 18 # returns 1

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30,

 Called fact(2) on line 18

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30,

 Called fact(2) on line 18 # returns 2

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

 Called fact(3) on line 30 # returns 6

]

COMPUTING FACT(3)
If push is list.append and pop is list.pop:

Note "top" of stack is the last element.

call_stack == [

]

RECURSIVE LISTDIR
How can we make a function rlistdir(path) that

will return a list of the contents of a directory and all of
its subdirectories?

Python actually has multiple functions in the standard library that can do this, though we
haven't discussed them. The point is to construct a solution using the things we've covered!

RECURSION PROS AND CONS
Often can solve a problem with recursion or with loops
(an iterative solution). Why use recursion?

Pros:

Short code
Clear code

Unclear:

Speed

Cons:

Uses more
memory

REFERENCES
In :

 discuss recursion

ACKNOWLEDGEMENTS
Some of today's lecture was based on teaching materials developed for MCS 260 by

.

REVISION HISTORY
2021-10-29 Initial publication

Downey
Sections 5.8 to 5.10

Jan
Verschelde

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62
http://homepages.math.uic.edu/~jan/
http://homepages.math.uic.edu/~jan/

