
LECTURE 21
DISPATCH TABLES

MCS 260 Fall 2021
Emily Dumas

REMINDERS
Project 2 solution will be posted Friday

Project 3 to be announced next week; due Nov 5

Homework 7 due tomorrow

COMMON SITUATION
Chain of of/elif/elif/else checking the same variable,
taking a different action for each possible value.

if s == "exit":

 exit()

elif s == "help":

 print(HELP_MSG)

elif s == "next":

 x = f(x)

 print(x)

If we put the body of each if/elif into a function, this
would look like:

This is ok, but the similarity of all the elif blocks is
suspicious. Is there a shorter way?

if s == "exit":

 exit()

elif s == "help":

 do_help()

elif s == "next":

 do_next()

We can reduce duplication by storing the mapping
from values to functions in a dict.

The dictionary handlers is an example of a dispatch
table.

handlers = {

 "exit": exit,

 "help": do_help,

 "next": do_next

}

if s in handlers:

 handlers[s]() # replaces all the if/elif bodies

DISPATCH TABLES
A mapping from values to actions, so looking up the
value associated to a key and calling it replaces a long
chain of if/elif.

Advantages:

Possible actions are stored in an actual data
structure, rather than implicitly described by code.
Make introspection possible (program can list,
examing, modify the table)
Late extensibility: Program doesn't necessarily need
to know the entire table when it starts!

TERMINAL
Let's refactor our mini-terminal to perform each
command through a function, and to use a dispatch
table to decide which one to call.

REFERENCES
We covered dispatch tables in detail because it provided a way to demonstrate important
ideas from Lecture 20 (functions are values, variadic functions, argument unpacking) in a
realistic example. Dispatch tables are not covered directly in any of the optional texts.

When we discuss object-oriented programming, we'll revisit this idea.

REVISION HISTORY
2021-10-10 Initial publication

