
LECTURE 20
MORE ON FUNCTIONS, ARGUMENTS, AND

ASSIGNMENT
MCS 260 Fall 2021

Emily Dumas

REMINDERS
Project 2 due 6pm central today

Project 2 solution will be posted next Friday

Homework 7 posted, due 10am Tue

TERMINAL
I unified the "mini-terminal" examples from the 10am
and 2pm lectures in terminal.py.

CRITICISMS
It's a good start, but:

Adding a new command requires a new elif
List of all commands (e.g. for `help`) must be manually
updated

FUNCTIONS ARE VALUES
Functions are values in Python, just like float, int, etc.
Functions can be assigned to variables, used as parameters,
stored in lists, used as keys or values

RETURNING MULTIPLE VALUES
def sumprod(x,y):

 """Return the sum and product of two numbers"""

 return x+y, x*y

s,p = sumprod(5,8)

now s==13 and p==40

WHY THIS WORKS
A comma separated list (either bare or in parentheses)
in Python is a tuple.

Tuples are like lists but immutable. They are iterable.

Tuple assignment lets you assign an iterable of values
to a tuple of names as

name0, name1, name2 = value0, value1, value2

name0, name1, name2 = L # if L has length 3

EXAMPLE: SWAP

In other languages you would need a temporary place
to store one of the values.

x = 19

y = 52

x,y = y,x # swap their values!

RETURNING MULTIPLE VALUES?

From Python's perspective, sumprod returns one value

(a tuple), and then tuple assignment stores those in s

and p, respectively.

def sumprod(x,y):

 """Return the sum and product of two numbers"""

 return x+y, x*y

s,p = sumprod(5,8)

now s==13 and p==40

VARIADIC FUNCTIONS
A Python function can indicate that it will accept
however many arguments the caller decides to give it:

This example requires at least 2 arguments, but allows
more. Arguments 3 and on are "packed" into a tuple
called args.

def f(x,y,*args):

 """function that accepts 2 or more arguments"""

 # body of function here

 # probably examine len(args) and args[i], i=0,1,...

ARGUMENT UNPACKING
Conversely, what if you know all the arguments you
want to give a function, but they are in a list rather than
separate variables?

Use * to tell Python to unpack the list (or other

iterable) into separate arguments:

L = ["Users","ddumas","teaching","mcs260","example.py"]

os.path.join(L) # FAILS

L = ["Users","ddumas","teaching","mcs260","example.py"]

os.path.join(*L) # equivalent to os.path.join(L[0],L[1],...)

WRONG NUMBER OF ARGUMENTS
If you pass a function a number of arguments that it
cannot accept, it raises TypeError. E.g.

def f(x,y,*args):

 print()

def g(x):

 print()

f() # TypeError

f(1) # TypeError

f(1,2) # OK

f(1,2,3) # OK

g() # TypeError

g(1) # OK

g(1,2) # TypeError

BACK TO THE MINI-TERMINAL
Let's unify the many similar if/elif in our terminal
example as follows:

Make a dictionary to store all the commands
Keys are command names
Values are functions that perform the actions
Main loop uses the command name to look up the
right function to call. No if/elif/elif/...

REVISION HISTORY
2021-10-08 Initial publication

