
LECTURE 17
STACKS AND QUEUES

MCS 260 Fall 2021
Emily Dumas

REMINDERS
Homework 6 posted, due Tuesday at 10am

Project 2 autograder opens Monday

Project 2 due 6pm central on Fri Oct 8

JOINING PATH COMPONENTS

Now fn is "data\\pride.txt" if running on

Windows, or "data/pride.txt" on MacOS or Linux.

import os

fn = os.path.join("data","pride.txt")

OTHER OS MODULE GOODIES
os.path.exists(fn) returns a boolean to indicate

whether a �le with the given name exists already.

More on this module later!

TWO DATA STRUCTURES
Stack - LIFO (last in, �rst out) storage of items. Like a
physical stack, where you can only access the item
most recently added.

Queue - FIFO (�rst in, �rst out) storage of items. Like
a line or waiting list. Add to one side, remove from
the other.

STACK
Adding an item is called push, removing an item is called
pop.

Often used for:

Undo a sequence of actions.
Syntax highlighting: Which "(" matches this ")" ?

You can make a stack using a Python list:

push becomes list.append

pop becomes list.pop

QUEUE
Adding an item is called enqueue. Removing an item is
called dequeue.

Common applications:

Work to be done / data to be processed.
Temporary storage, e.g. for communication.

Maybe do this with a list?

enqueue becomes list.append(item)

dequeue becomes list.pop(0)

WARNING
Using a list as a queue is NOT ef�cient.

Removing an item from the beginning of a list takes
time proportional to list size.

More ef�cient: deque from the collections module

Output:

import collections

Q = collections.deque() # pronounced "deck"

Q.append("first in") # enqueue

Q.append(260)

Q.append("last in")

while len(Q)>0:

 x = Q.popleft() # dequeue

 print(x)

first in

260

last in

Notice deque implements queue operations:

enqueue becomes deque.append(item)

dequeue becomes deque.popleft()

Ef�ciency means time to add or remove an item is
independent of how many items are present (like
stacks).

STACK APPLICATION
Checking parenthesis matching (example of parsing)

This expression is ok:

((2+3) - (4*5))

These are not:

((5*7))) - ((2)

((2+3)-5))

Goal: Decide if ok, give useful error if not.

parens.py
"""Check arithmetic expression for balanced parentheses"""

print("Enter an arithmetic expression in parentheses:")

s = input().strip()

paren_stack = []

for i,c in enumerate(s):

 if c == "(":

 paren_stack.append(i)

 elif c == ")":

 if len(paren_stack) == 0:

 # Too many right parentheses

 print("ERROR: Extra right parenthesis")

 print(s)

 print(i*" " + "^")

 break

 paren_stack.pop()

if len(paren_stack) > 0:

 # Unclosed left parenthesis

 i = paren_stack.pop() # Where was the left paren that's open?

 print("ERROR: Unclosed parenthesis")

REFERENCES
Optional text discuss stacks and queues in Section 8.1

 does not discuss stacks and queues in general
 discusses

stacks and queues in Chapter 6.

REVISION HISTORY
2021-10-01 Initial publication

Brookshear & Brylow
Downey
Data Structures and Algorithms in Python by Goodrich, Tamassia, and Goldwasser

https://www.pearson.com/us/higher-education/program/Brookshear-Computer-Science-An-Overview-13th-Edition/PGM1949505.html
http://greenteapress.com/thinkpython2/html/index.html
https://books.google.com/books/about/Data_Structures_and_Algorithms_in_Python.html?id=IFmBtgAACAAJ

