
LECTURE 13
FILES

STRING FORMATTING
MCS 260 Fall 2021

Emily Dumas

REMINDERS
Project 2 description coming today

Project 2 will be due Fri Oct 8

Avoid the green "play" button in VS code

Week 5 feedback survey open until 2pm Fri

FILES
A �le is a named, ordered collection of data, usually in
persistent storage (disks, �ash, etc.).

Files are stored in a hierarchy of directories.

The OS provides functions that programs can use to
access �les, handling the lower-level details itself.

BASIC FILE OPERATIONS
open: Request access to a �le (by name)
read: Get data from an open �le
write: Add or change data in an open �le
close: Relinquish access to an open �le

The OS keeps track of a �le offset, the place in the �le
where the next read or write operation will happen.
This can also be moved with an operation called seek.

BYTES OR STRINGS?
Two ways to access �les:

binary format: Read and write bytes (as the OS itself
does)
text format: Read and write strings. Python
translates to and from bytes using an encoding.

We'll only cover text format �le operations for now.

ENCODINGS
An encoding is a way of turning a sequence of unicode
characters into a sequence of bytes.

UTF-8, ISO-8859-1, and CP-1252 are examples of
encodings.

E.g. translating "Adiós" into bytes:

0x41 0x64 0x69 0xc3 0xb3 0x73 in UTF-8

0x41 0x64 0x69 0xf3 0x73 in ISO-8859-1

We will use UTF-8 exclusively.

FILES IN PYTHON
open(filename,[mode],[encoding=...])

opens a �le and returns an object representing it.

Methods of the �le object allow you to read or write.

The �les you read/write this way can have any name you like; they don't need to end in ".txt".

"""Write a string to a file"""

fout = open("out.txt","w",encoding="UTF-8") # w means write

fout.write("Hello world")

fout.close() # Done with this file (OS does cleanup)

fin = open("out.txt","r",encoding="UTF-8") # r means read only

s = fin.read() # Get entire file contents

fin.close()

print("Contents of file:",s)

MODES
"r" - The default. Allows reading. File must exist.

"w" - Deletes the �le if it exists, creates it if not.
Allows writing.

"a" - Place offset at the end of the �le if it exists.
Allows writing (i.e. "appending").

"r+" - Offset at beginning if �le exists. Allows reading
and writing.

"w+" - Deletes the �le if it exists, creates it if not.
Allows reading and writing.

READING LINES
Often you want to process one line at a time. File
objects are iterable, giving the lines. E.g.

Sample output:

nl.py
"""Number the lines of a file specified on command line"""

import sys

fin = open(sys.argv[1],"r",encoding="UTF-8")

n = 0

for line in fin:

 n = n+1

 print(n,line,end="") # line usually has \n at the end

fin.close()

$ python nl.py nl.py

1 """Number the lines of a file specified on command line"""

2 import sys

...

https://dumas.io/teaching/2020/fall/mcs260/samplecode/nl.py

Important: file.write() is not like print(). It

doesn't add a newline, and it doesn't accept multiple
arguments to print.

Must prepare a single string to write. The usual way is
to use str.format():

pet_type = "ducks"

print("I have",21,pet_type) # OK

fout.write("I have",21,pet_type) # FAILS

pet_type = "ducks"

fout.write("I have {} {}\n".format(21,pet_type)) # ok

STRING FORMATTING
str.format() has many features to create a string

based on a template and some values. In the string,
placeholders ({} or {...}) are replaced by arguments

of str.format().

>>> "{1} taught {0}".format("MCS 260","Dumas") # give indices

'Dumas taught MCS 260'

>>> for x in range(98,101):

... print("{:4}".format(x)) # specify width

...

 98

 99

 100

>>> "{:04}".format(42) # pad to width with zeros

'0042'

The general placeholder syntax is {w:ot} where w

speci�es which argument, o is a set of options, and t is
the type.

>>> "{:8.2f}".format(42) # f = float, width 8, 2 digits after .

' 42.00'

>>> "{:8x}".format(42) # x = hex int, width 8

' 2a'

>>> "{:8d}".format(42) # d = decimal int, width 8

' 42'

>>> "{:.2f}".format(13+2j) # f allows complex; no total width

'13.00+2.00j'

str.format() has a lot of features we didn't discuss

today.

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

REFERENCES
In :

Section 14.3 discusses a different, older way of formatting strings.
This by Lisa Tagliaferri at DigitalOcean is a
good reference for the topics in string formatting we covered today.

REVISION HISTORY
2021-09-22 Initial publication

Downey
Chapter 14 discusses �les, especially Sections 14.1, 14.2, and 14.4.

Introduction to String Formatters in Python 3

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2015.html
https://www.digitalocean.com/community/tutorials/how-to-use-string-formatters-in-python-3

