
LECTURE 13
FILES

STRING FORMATTING
MCS 260 Fall 2021

Emily Dumas

REMINDERS
Project 2 description coming today

Project 2 will be due Fri Oct 8

Avoid the green "play" button in VS code

Week 5 feedback survey open until 2pm Fri

FILES
A file is a named, ordered collection of data, usually in
persistent storage (disks, flash, etc.).

Files are stored in a hierarchy of directories.

The OS provides functions that programs can use to
access files, handling the lower-level details itself.

BASIC FILE OPERATIONS
open: Request access to a file (by name)
read: Get data from an open file
write: Add or change data in an open file
close: Relinquish access to an open file

The OS keeps track of a file offset, the place in the file
where the next read or write operation will happen.
This can also be moved with an operation called seek.

BYTES OR STRINGS?
Two ways to access files:

binary format: Read and write bytes (as the OS itself
does)
text format: Read and write strings. Python
translates to and from bytes using an encoding.

We'll only cover text format file operations for now.

ENCODINGS
An encoding is a way of turning a sequence of unicode
characters into a sequence of bytes.

UTF-8, ISO-8859-1, and CP-1252 are examples of
encodings.

E.g. translating "Adiós" into bytes:

0x41 0x64 0x69 0xc3 0xb3 0x73 in UTF-8
0x41 0x64 0x69 0xf3 0x73 in ISO-8859-1

We will use UTF-8 exclusively.

FILES IN PYTHON
open(filename,[mode],[encoding=...])

opens a file and returns an object representing it.

Methods of the file object allow you to read or write.

The files you read/write this way can have any name
you like; they don't need to end in ".txt".

"""Write a string to a file"""

fout = open("out.txt","w",encoding="UTF-8") # w means write

fout.write("Hello world")

fout.close() # Done with this file (OS does cleanup)

fin = open("out.txt","r",encoding="UTF-8") # r means read on

s = fin.read() # Get entire file contents

fin.close()

print("Contents of file:",s)

MODES
"r" - The default. Allows reading. File must exist.

"w" - Deletes the file if it exists, creates it if not.
Allows writing.

"a" - Place offset at the end of the file if it exists.
Allows writing (i.e. "appending").

"r+" - Offset at beginning if file exists. Allows reading
and writing.

"w+" - Deletes the file if it exists, creates it if not.
Allows reading and writing.

READING LINES
Often you want to process one line at a time. File
objects are iterable, giving the lines. E.g.

Sample output:

nl.py
"""Number the lines of a file specified on command line"""

import sys

fin = open(sys.argv[1],"r",encoding="UTF-8")

n = 0

for line in fin:

 n = n+1

 print(n,line,end="") # line usually has \n at the end

fin.close()

$ python nl.py nl.py

1 """Number the lines of a file specified on command line"""

2 import sys

...

https://dumas.io/teaching/2020/fall/mcs260/samplecode/nl.py

Important: file.write() is not like print(). It
doesn't add a newline, and it doesn't accept multiple
arguments to print.

Must prepare a single string to write. The usual way is
to use str.format():

pet_type = "ducks"

print("I have",21,pet_type) # OK

fout.write("I have",21,pet_type) # FAILS

pet_type = "ducks"

fout.write("I have {} {}\n".format(21,pet_type)) # ok

STRING FORMATTING
str.format() has many features to create a string
based on a template and some values. In the string,
placeholders ({} or {...}) are replaced by
arguments of str.format().

>>> "{1} taught {0}".format("MCS 260","Dumas") # give indices

'Dumas taught MCS 260'

>>> for x in range(98,101):

... print("{:4}".format(x)) # specify width

...

 98

 99

 100

>>> "{:04}".format(42) # pad to width with zeros

'0042'

The general placeholder syntax is {w:ot} where w
specifies which argument, o is a set of options, and t is
the type.

>>> "{:8.2f}".format(42) # f = float, width 8, 2 digits after

' 42.00'

>>> "{:8x}".format(42) # x = hex int, width 8

' 2a'

>>> "{:8d}".format(42) # d = decimal int, width 8

' 42'

>>> "{:.2f}".format(13+2j) # f allows complex; no total width

'13.00+2.00j'

str.format() has a lot of features we didn't
discuss today.

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

REFERENCES
In :

Section 14.3 discusses a different, older way of formatting strings.
This by Lisa Tagliaferri at DigitalOcean is a
good reference for the topics in string formatting we covered today.

REVISION HISTORY
2021-09-22 Initial publication

Downey
Chapter 14 discusses files, especially Sections 14.1, 14.2, and 14.4.

Introduction to String Formatters in Python 3

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2015.html
https://www.digitalocean.com/community/tutorials/how-to-use-string-formatters-in-python-3

