
LECTURE 12
COMMAND LINE ARGUMENTS

OPERATING SYSTEMS
MCS 260 Fall 2021

Emily Dumas

REMINDERS
Worksheet 5 will be posted this afternoon

Project 2 description coming soon

DOCSTRINGS
A Python function or file can begin with a string literal,
a docstring, to document its purpose.

 retrieves docstrings.

Any other explanatory text should be a comment.

help(function_name)

A function with a docstring:

Getting help for that function:

def f(x):

 "Return the square of `x`"

 return x*x

>>> help(f)

Help on function f in module __main__:

f(x)

 Return the square of `x`

>>>

EXPLANATORY TEXT
Is it the first statement in a file, or the first statement
in the body of a function?

Yes → Use a string literal, so it becomes a docstring
No → Use a comment (#)

COMMAND LINE ARGUMENTS
Taking a break from Python, let's talk about the shell.

When you run a command in the shell, it may accept
some strings as arguments, e.g.

Here is the command name, and the string
 is the first (and only) command line

argument (often called an arg).

Command line arguments are separated by spaces.

PS C:\Users\ddumas> cd Desktop

PS C:\Users\ddumas\Desktop>

cd
Desktop

A Python program can access the command line
arguments provided when it was run. For example, if a
script is run with the command

Then we can access each string after "python". This is
useful so that a program can accept input from the
command that runs it, rather than reading it from the
keyboard.

python example.py now is the winter of our discontent

To access command line args, we first import the
module:

Now we have access to the list . At index it
contains the name of our script (as given to the
interpreter). At index is the first argument after the
script name, etc..

In the previous example, would have
value:

sys

import sys

sys.argv 0

1

sys.argv

['example.py', 'now', 'is', 'the',

 'winter', 'of', 'our', 'discontent']

EXAMPLE
Let's write a program that repeats a message several
times. It should take two command-line arguments:

Argument 1: Number of times
Argument 2: Message

Basic version:
"""Repeat a string a given number of times.

The first argument is the number of times.

The second gives the string to repeat.

"""

import sys

n = int(sys.argv[1])

s = sys.argv[2]

for i in range(n):

 print(s)

PS C:\Users\ddumas\Desktop> python repeat0.py 5 hello

hello

hello

hello

hello

hello

PS C:\Users\ddumas\Desktop> python repeat0.py onlyone

Traceback (most recent call last):

 File "repeat0.py", line 7, in <module>

 n = int(sys.argv[1])

ValueError: invalid literal for int() with base 10: 'onlyone'

PS C:\Users\ddumas\Desktop> python repeat0.py

Traceback (most recent call last):

 File "repeat0.py", line 7, in <module>

 n = int(sys.argv[1])

IndexError: list index out of range

PS C:\Users\ddumas\Desktop>

The better version checks for too few
arguments and handles it gracefully.

repeat.py

"""Repeat a string a given number of times.

The first argument is the number of times.

The second gives the string to repeat.

"""

import sys

if len(sys.argv) < 3:

 print("Usage:",sys.argv[0],"N s")

 print("Prints N copies of string s, one per line.")

else:

 n = int(sys.argv[1])

 s = sys.argv[2]

 for i in range(n):

print(s)

https://dumas.io/teaching/2020/fall/mcs260/samplecode/repeat.py

PS C:\Users\ddumas\Desktop> python repeat.py

Usage: repeat.py N s

Prints N copies of string s, one per line.

PS C:\Users\ddumas\Desktop> python repeat.py 3

Usage: repeat.py N s

Prints N copies of string s, one per line.

PS C:\Users\ddumas\Desktop> python repeat.py 3 goodbye

goodbye

goodbye

goodbye

The handoff of arguments from the shell to the Python
script is one of the services of the operating system or
OS.

Windows, Linux, Mac OS, Android, iOS are all operating
systems.

An OS manages the lowest-level details of a
computer's operation.

A key feature of operating systems is that they provide
abstraction.

For example: A wireless mouse, a wired mouse, and a
touchpad operate very differently. The OS handles
these differences so that a program can ask for the
current position of the pointer, without concern for the
specific hardware.

GLOSSARY
CPU - Central Processing Unit or processor. The
main component of a computer that executes
instructions in a computer program.
Hardware - The physical parts (electronic devices)
that make up a computer.
Software - Collective term for computer programs.

GLOSSARY
RAM - Random-Access Memory, or just memory. The
place where currently-running programs and the
data they use are stored. Variables are stored here.
Contents of RAM are lost when the computer is
powered off or restarted.
Persistent storage - Hardware devices such as disks,
USB flash drives, etc., that can store data that is not
lost on restart or power-off.

SOME OS SERVICES
Device management: communicate with attached
devices (mouse, keyboard, disks, video controller,
sound hardware) and provide a standardized
interface for them.
Process management: Control starting, stopping,
running of programs as processes. Manage which
processes have access to the CPU at a given time.

SOME OS SERVICES
Memory management: Processes can only access
parts of RAM that the OS allows them to. They can
request access to more (or less) RAM.
File management: Data stored on persistent storage
devices is usually arranged into named files, which
are in turn arranged into a hierarchy of directories.
Storage devices know nothing about these
concepts, and store only bytes. The OS provides the
file/dir abstractions.

WHEN YOU CLICK "SAVE"
At a low level (hardware), assuming a wireless mouse:

Your finger activates a switch in the mouse.

A processor in the mouse is running a program that
frequently checks the switch position. One such
check notices it is closed, and calls a function to
send notification of the change.

The mouse begins sending bits of data using a
2.4Ghz radio signal.

A bluetooth adapter in your computer that is
constantly monitoring that radio frequency receives
the data and asks for attention from the CPU.

The CPU pauses the program it was running and
switches to a driver in the OS that processes
bluetooth data packets.

The driver analyzes the raw data received over the
radio link and adds a new "mouse event" to a list in
RAM.

Later, another part of the OS that notifies programs
of user events gets access to the CPU. It begins
searching for a process that should receive
notification of the new mouse event.

The editor window is identified as the recipient.

Later, the editor asks the OS for new events, and
gets the mouse event as an answer.

Skipping hundreds of steps until...

The disk completes the request to write the bytes
representing "...print('Hello world')\n" to the
specified position.

WHEN YOU CLICK "SAVE"
At the level of OS-provided functions:

A loop in the editor is constantly asking the OS if
there are new events to handle. Eventually, it
receives one—a mouse click.
The editor determines the click is on "Save".
A function within the editor to save the current file is
called. It determines the filename, and asks the OS
to open the file with permission to write.
The OS gives the editor permission to write to that
file.

The editor takes the contents of the file the user is
editing, encodes it into bytes, and asks the OS to
write these bytes to the open file.

The OS reports success, and the editor asks the OS
to close the file.

The editor updates its display to show that the file
has no unsaved changes.

NEXT TIME
Reading and writing files in Python
String formatting

REFERENCES
Command line arguments are not covered in the primary text.
The documentation of briefly summarizes today's material on command line
arguments.
Today's discussion of operating systems summarizes some of the material from Chapter 3
in .

REVISION HISTORY
2021-09-20 Initial publication

sys.argv

Brookshear & Brylow

https://docs.python.org/3/library/sys.html#sys.argv
https://www.pearson.com/us/higher-education/program/Brookshear-Computer-Science-An-Overview-13th-Edition/PGM1949505.html

