
LECTURE 10
LOCAL VARIABLES;

DICTIONARIES
MCS 260 Fall 2021

Emily Dumas

REMINDERS
Homework 2 scores and solutions posted

Project 1 due Friday, 6pm central

Worksheet 4 solutions to be posted tomorrow

Homework 4 to be posted tomorrow, due Tue Sep 21
at 10am

Never submit anything a�er the deadline unless you
have an extension

MAX()
In Python, the function max takes an iterable and
returns a largest item in it.

There is also min().

max([2,6,0,2,0,2,1]) # returns 6

max("2775") # returns "7"

max(range(10_000)) # very slow way to get the number 9999

LOCAL VARIABLES
Variables changed or created inside a function don't
affect anything outside of the function.

Such variables are local to the function.
>>> def f():

... x = 10 # local variable

... print("x is",x)

...

>>> x=3 # danger! same name as local var

>>> f()

x is 10

>>> x

3

PARAMETERS ARE LOCAL, TOO

Equivalent to:

def g(x):

 x = x + 1

 print(x)

a = 5 # global var

g(a) # prints 6

print(a) # prints 5

a = 5 # global var

x_local_to_g = a

x_local_to_g = x_local_to_g + 1

print(x_local_to_g)

print(a)

REASONS TO USE FUNCTIONS
Don't repeat yourself (DRY). Capture o�en-used
code in a function to make programs smaller and
easier to maintain.

Well-named functions make code more readable,
expressing intent and deferring details.

Local variables provide isolation, avoid accidental
modification or reuse of variables.

DICTIONARIES
A dictionary or dict in Python is an unordered
collection of key → value pairs.

Dictionaries can be indexed using keys, to get the
associated values.

Other languages call this a map or associative array.

Dictionaries in Python are mutable.

Example of syntax for working with dictionaries:
>>> # define a new dict

>>> tuition = { "UIC": 10584, # key "UIC" -> value 10584

... "Stanford": 50703,

... "Harvard": 46340 }

>>> # Get the value associated to a given key

>>> tuition["UIC"]

10584

>>> # Add or change the value at a key

>>> tuition["PSU"] = 18454

>>> tuition

{'UIC': 10584,

 'Stanford': 50703,

 'Harvard': 46340,

 'PSU': 18454}

>>> # Remove a key and value

>>> del tuition["Harvard"]

>>> tuition

{'UIC': 10584, 'Stanford': 50703, 'PSU': 18454}

Mixed types are ok for keys or values.

Useful dict methods:

dict_keys, dict_items, dict_values types behave a lot
like list, and can be converted to a list with .

d = { 1: "fish", "two": "fish", "x": [7,6,5] }

>>> d.values() # All values, without the keys

dict_values(['fish', 'fish', [7, 6, 5]])

>>> d.items() # All key-value pairs (like enumerate(L))

dict_items([(1, 'fish'), ('two', 'fish'), ('x', [7, 6, 5])])

list()

MEMBERSHIP TESTING
Membership in a dictionary means being a key!

Forgetting this is a very common source of
programming errors.

>>> d = { 1: "fish", "two": "fish", "x": [7,6,5] }

>>> "fish" in d

False

>>> 1 in d

True

ITERATION OVER DICTS
dicts are iterable, but iterate over the keys.

for k in d: # loop over keys

 print(k,"is one of the keys")

for k in d: # loop over keys (index to get value)

 print("Key",k,"has value",d[k])

It is common for the values in a dict to be dicts
themselves. This is the usual way to make a collection
of labeled data indexed by a key.

schooldata = {

 "UIC": {

 "fullname": "University of Illinois at Chicago",

 "tuition": 10584,

 "undergrad_students": 21641,

 },

 "Stanford": {

 "fullname": "Leland Stanford Junior University",

 "tuition": 50703,

 "undergrad_students": 7083

 },

 "Harvard": {

 "fullname": "Harvard University",

 "tuition": 46340,

"undergrad students": 6755

DICTIONARIES AS RULES

Output:

pr_replacements = {

 "accident": "unplanned event",

 "escape": "departure",

 "laser-sharks": "fish"

}

original = "an accident involving the escape of laser-sharks"

words = original.split() # ["an", "accident", ...]

for w in words:

 if w in pr_replacements:

 w = pr_replacements[w]

 print(w,end=" ")

print()

an unplanned event involving the departure of fish

HASHABLE TYPES
Not every type is allowable as a key in a dictionary.

Strings and numeric types are allowed. Lists and dicts
are not.

In most cases, allowable keys are immutable types.

REFERENCES
In :

ACKNOWLEDGEMENT
Some of today's lecture was based on teaching materials developed for MCS 260 by

.

REVISION HISTORY
2021-09-14 Initial publication

Downey
Chapter 11 covers dictionaries

Jan
Verschelde

http://greenteapress.com/thinkpython2/html/index.html
https://greenteapress.com/thinkpython2/html/thinkpython2012.html
http://homepages.math.uic.edu/~jan/
http://homepages.math.uic.edu/~jan/

