
MCS 260 – Introduction to Computer Science – Fall 2020 – Emily Dumas

Week 4 Worksheet

Instructions. Unlike some previous worksheets, for this one you are encouraged to have a Python
interpreter open at all times (or to have a code editor open, and to be ready to run your code).

Language features. In your solutions you can use (and may need) the following built-in func-
tions/methods, even if they haven’t been discussed in lecture:

• The function str() will convert a numeric type to a string, so for example, str(123) evalu-
ates to "123".

Problems.

(1) Suppose that L is a list whose elements are sequences. Generate a new list M where M[i] is
equal to the length of L[i] (an integer). Thus if L = [[5,6], "Fuji"] then the result
should be M = [2,4]; but your code should work for any L whose elements are sequences,
not just in this one example.
(a) Use a for loop to do this.
(b) Use a list comprehension.

(2) Write a function with spaces() that takes one parameter, an iterable of strings, and returns
a list of the strings in this iterable that contain a space character. So, for example, if we set

L = ["banana", "apple", "green pear", "guava", "red dragonfruit"]

then with spaces(L) should evaluate to
["green pear", red dragonfruit"]

(3) In each part of this problem, write code that uses the following list of tuples:
coursedata = [("MCS",260,"Intro. to comp. sci."),

("MCS",275,"Prog. tools and file mgmt."),

("MATH",180,"Calculus I"),

("MATH",320,"Linear Algebra I"),

("MATH",549,"Differentiable Manifolds I"),]

Thus you probably want to copy and paste this into a source file, or download it from
https://dumas.io/teaching/2020/fall/mcs260/samplecode/coursedata.py

(a) Write a for loop that iterates over this list and prints all of the course numbers, i.e.
MCS 260

MCS 275

MATH 180

MATH 320

MATH 549

(b) Write a list comprehension that iterates over coursedata and yields
["MCS 260", "MCS 275", "MATH 180", "MATH 320", "MATH 549"]

(c) Write a for loop that prints the data for each MCS course in the following format:
Course Number: MCS 260

Description: Intro. to comp. sci.

(d) Write a list comprehension that is analogous to part (a), but yields a list of strings, one
for each MCS course. For example the first string would be

"Course Number: MCS 260\nDescription: Intro. to comp. sci.\n"

(4) Using the list of lists below, write a for loop inside of a for loop that will print the even
numbers that occur as elements of elements of L.

https://dumas.io/teaching/2020/fall/mcs260/samplecode/coursedata.py

L = [[3,1,2], [9,9,6], [3,0,4,1]]

That is, the output should be:
2

6

0

4

(5) Write a function opening(...) to generate the first line of a letter or memo. It should
take parameters fullname, salutation, and greeting (in that order). The parameter
salutation should have default value "", and the parameter greeting should have de-
fault value "Dear". This function should print the greeting, followed by a space, an optional
salutation, the fullname, and a comma. Examples:
• opening("Grace Hopper") prints

Dear Grace Hopper,

• opening("Emily Dumas",greeting="Howdy") prints
Howdy Emily Dumas,

• opening("Marie Curie",salutation="Dr.",greeting="To the esteemed") prints
To the esteemed Dr. Marie Curie,

Hint: How do you avoid printing two spaces between the greeting and the fullname if the
salutation is the empty string?

(6) Write a function that takes a list of floats and returns their average (mean). (As a reminder,
the mean of real numbers x1,x2, . . . ,xn is defined as 1

n(x1 + x2 + · · ·+ xn).)

(7) Suppose that cmds is an iterable of strings. Write a loop that will print the elements of cmds
in order, stopping with the first one that is equal to "stop", "exit", or "end".

(8) Write a function that applies an arbitrary linear function f (x) = mx+ b to a number x. It
should take three parameters m,b,x. Then, use this to apply the function 3x+2 to the integers
[0,1, . . . ,24] and the function x−7 to the floats [0,0.5,1,1.5,2,2.5,3].

Extensions.

• If R is a sequence in Python, the expression

R[:5]

does not necessarily evaulate to sequence of length 5. It can produce a sequence of a different
length, without producing an error! How?

• These two sections of code do very similar things:
y = []

for x in range(5):

y.append(x**3)

and
y = [x**3 for x in range(5)]

But is there any identifiable difference between them? Specifically, if you know one of these
was previously run in a REPL that is still open, is there any way (other than examining the
previously run commands) you could tell which one it was?

• Write a list comprehension that produces all integers between 10000 and 20000 that are divis-
ible by 23, have 5 as the last decimal digit, and also contain the digit 7.

Revision history:

• 2020-09-15 Modified wording in question 5
• 2020-09-13 Initial release

