
LECTURE 9
FUNCTIONS

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Work on:

Quiz 3 (due Today, 6pm central)

Project 1 (due Friday, 6pm central)

Worksheet 4 available

We have seen lots of functions: , ,
, , , ...

These are built-in functions, provided by Python. They
do useful things, sometimes using data you provide, and
sometimes returning a value.

It is also possible to create your own functions.

input() print()
float() len() enumerate()

Syntax for a function de�nition:

The are parameters.

Syntax for calling a function:

The are arguments. The statements in the
function body will run with ,

,

def function_name(param0, param1, ...):

 statement

 ...

 statement

 return value

parami

function_name(arg0, arg1, ...)

argi

param0=arg0
param1=arg1

Function with no parameters

Now we can use this e.g. as:

def input_yes_no():

 while True:

 s = input() # Read string from keyboard

 s = s.lower() # Make all lower case

 if s in ["y","yes"]:

 s = "yes"

 break

 elif s in ["n","no"]:

 s = "no"

 break

 else:

 print("Please enter y/yes or n/no.")

 return s

print("Set all quiz scores to 100?")

if input_yes_no() == "yes":

 for i,student in enumerate(roster):

 scores[i] = 100.0

DOCSTRINGS
A Python function (or �le) can begin with a string literal,
a docstring, to document its purpose.

 retrieves docstrings.help(function_name)

>>> def f(x):

... """

... Return the square of `x`.

... """

... return x*x

...

>>> help(f)

Help on function f in module __main__:

f(x)

 Return the square of `x`.

>>>

NEW RULE
Every function you write in
MCS 260 must have a
descriptive docstring.

A return is not required; a function can perform tasks
without returning a value.

A return can appear anywhere in the function body to
return to the caller immediately.

def input_yes_no2():

 """

 Read yes/no from keyboard, allowing single letter or full

 word answers. Returns one of the strings "yes" or "no".

 """

 while True:

 s = input() # Read string from keyboard

 s = s.lower() # Make all lower case

 if s in ["y","yes"]:

 return "yes"

 elif s in ["n","no"]:

 return "no"

 else:

 print("Please enter y/yes or n/no.")

PARAMETERS
Parameters allow a function to accept and use data. The
syntax is a list of names in parentheses after the
function name. Example:

Now if we call , the body of the
function runs with and .

These are called positional arguments, as they
correspond to parameters by position.

def trim(s, maxlen):

 """Return the initial segment of sequence s,

 consisting of at most `maxlen` items."""

 return s[:maxlen] # Works even if s is short!

trim("picnic",3)
s="picnic" maxlen=3

Parameters can be given default values:

When calling a function, arguments can be given
positionally, or by name. The latter are keyword
arguments.

def increase(x, addon=5): # Note the default value for addon

 "Return the sum of `x` and `addon` (defaults to 5)"

 return x+addon

increase(3) # result is 8

increase(3,addon=1) # result is 4

increase(addon=2,x=3) # result is 5

increase(addon=2,11) # ERROR: pos. args must be first

increase(addon=2) # ERROR: arg without default omitted

LOCAL VARIABLES
Variables and parameters changed inside a function
don't affect anything outside of the function.

Such variables are local, and the function is their scope.
>>> def f():

... "Example of local variables"

... x = 10 # local variable

... print("x is",x)

...

>>> x=3

>>> f()

x is 10

>>> x

3

REASONS TO USE FUNCTIONS
Don't repeat yourself (DRY). Capture often-used
code in a function to make programs smaller and
easier to maintain.

Well-named functions make the code using them
more readable.

Local variables provide isolation, avoid accidental
modi�cation or reuse of variables.

DRY
Consider

versus

print("In celsius:")

print("Outside temp: ",(ext_air_f()-32)/1.8)

print("Inside temp: ",(int_air_f()-32)/1.8)

print("Forecast high (outside): ",(forecast_high()-32)/1.8))

def to_celsius(fahrenheit_temp):

 "Convert Fahrenheit to celsius"

 return (fahrenheit_temp-32) / 1.8

print("In celsius:")

print("Outside temp: ",to_celsius(ext_air_f()))

print("Inside temp: ",to_celsius(int_air_f()))

print("Forecast high (outside): ",to_celsius(forecast_high()))

READABLE CODE
Short but dense:

Longer but easier to understand:

Often we care about what a function does, not how.

for netid in [x for x in roster if days_since_seen(x) > 7]:

 print("Not seen recently:",netid)

def not_seen(netid,days=7):

 "Has this student been seen recently? Return bool"

 return days_since_seen(netid) > days

def students_not_seen(days=7):

 "List netids of students not seen in `days` days."

 return [x for x in roster if not_seen(x,days=days)]

for netid in students_not_seen():

 print("Not seen recently:",netid)

ISOLATION
Variable used only brie�y:

Replace with local variable:

t

t = s.lower()

if t[0] == t[-1]:

 ...

def first_and_last_same(x):

 """Does string `x` have same first and last

 letter (case insensitively)?"""

 x = x.lower()

 return x[0] == x[-1]

if first_and_last_same(s):

 ...

REFERENCES
In :

 and both discuss functions, though the latter has a lot of material
we didn't cover today (e.g. recursion)

ACKNOWLEDGEMENT
Some of today's lecture was based on teaching materials developed for MCS 260 by

.

REVISION HISTORY
2020-09-14 Correction about keyword/positional arguments
2020-09-13 Initial publication

Downey
Chapter 3 Chapter 6

Section 13.5 discusses keyword args

Jan
Verschelde

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2004.html
http://greenteapress.com/thinkpython2/html/thinkpython2007.html
http://greenteapress.com/thinkpython2/html/thinkpython2014.html#sec156
http://homepages.math.uic.edu/~jan/
http://homepages.math.uic.edu/~jan/

