
LECTURE 8
LIST COMPREHENSIONS

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Work on:

Quiz 3 (due Mon)

Project 1 (due Sep 18) and Project 0

Quiz 2 grades posted

Today: Worksheet 3 solutions

ITERABLES
Last time we discussed for loops, which run a block of
code for each element of a sequence or certain other
"container" types.

The term for a thing that can appear in a for loop in
Python is an iterable. So iterables include:

Sequences (strings, lists, tuples)
,

Other built-in types we'll discuss soon (dict, set)
range(...) enumerate(...)

LIST METHODS
Lists in Python have many useful features we haven't
talked about.

Any list, say , comes with its own set of functions
(called methods) that operate directly on the list.

All except change the list.

L

L.append(x) # Add x to the end of the list

L.insert(i,x) # Insert x at position i

L.remove(x) # Remove first instance of x in L

L.pop() # Remove and return the last item of L

L.index(x) # Find x in L, return its index

index()

Example: Suppose is a list of strings representing
integers, and we need to convert it to a list of ints.

A for loop can be used to do this:

This pattern is very common: Iterate over a list, doing
something to each element, producing a new list.

L
M

L = ["42", "16", "15", "8", "4"]

M = []

for s in L:

 M.append(int(s))

now M == [42, 16, 15, 8, 4]

This pattern is so common that Python has a more
compact way of writing it. The code:

Can instead be written:

The expression in is called a list comprehension. A
comprehension is a compact way of writing a common
type of for loop.

M = []

for s in L:

 M.append(int(s))

M = [int(s) for s in L]

[]

COMPREHENSION EXAMPLES
The basic comprehension syntax is:

For example:

[expression for varname in iterable]

[x**2 for x in range(5)]

Gives [0, 1, 4, 9, 16]

[s[1:] for s in ["cat", "spot", "blot"]]

Gives ["at", "pot", "lot"]

[float(s[:-1]) for s in ["6C", "12.5C", "25C"]]

Gives [6.0, 12.5, 25.0]

The variable name in a comprehension can be anything,
it just needs to be used consistently.

These are all equivalent:

The name in a comprehension is not assigned to
anything outside the comprehension:

[x**2 for x in range(5)]

[t**2 for t in range(5)]

[apple**2 for apple in range(5)]

>>> [x**2 for x in range(5)]

[0, 1, 4, 9, 16]

>>> x

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

FILTERING
There is another common type of for loop, where
elements are not just transformed but also filtered.

This too can be done in a comprehension:

The general form is

words = ["alpha", "bridge", "assemble", "question"]

a_words = []

for s in words:

 if s[0] == "a":

 a_words.append(s)

Now a_words is ["alpha", "assemble"]

a_words = [s for s in words if s[0]=="a"]

[expression for name in iterable if condition]

FILTERING EXAMPLES
Consider:

In words: Start with the integers , consider only
the ones that are not equal to , and for each of those,
add the number to its square. Make a list of the results.

[x+x**2 for x in range(5) if x!=2]

0 … 4

2

range(5) gives [0, 1, 2, 3, 4]

!=2 gives [0, 1, 3, 4]

add to square gives [0+0, 1+1, 3+9, 4+16]

Final result:

[0, 2, 12, 20]

A list of tuples of first and last names:

Tip: as we do here, list and tuple literals can be split
between lines. Indenting is not required.

What if we want the full names (as first last) of the
people with first name David.

namepairs = [("Frances","Beal"),

 ("David", "Bowie"),

 ("Justin","Roberts"),

 ("David", "Cameron")]

[first+" "+last for first,last in namepairs if first=="David"]

Gives ["David Bowie", "David Cameron"]

That comprehension,

is almost equivalent to using a for loop:

[first+" "+last for first,last in namepairs if first=="David"]

davids = []

for first,last in namepairs:

 if first=="David":

 davids.append(first + " " + last)

Convert every digit from the input string to an int, and
make a list of these:

If the keyboard input is , then the above
will evaluate to

[int(c) for c in input() if c in "0123456789"]

i16 n+0 20B

[1, 6, 0, 2, 0]

WHEN TO USE COMPREHENSIONS
Use when their brevity improves readability, i.e. when a
for loop spreads a simple idea out over multiple lines.

Good for simple processing of a list where you
include, exclude, or transform on an element-by
element basis.

Not suitable when the processing is very
complicated, or when you need to exit the implicit for
loop early.

REFERENCES
In :

 discusses list comprehensions

REVISION HISTORY
2020-09-11 Typos fixed
2020-09-10 Initial publication

Downey
Section 19.2

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2020.html#sec224

