
LECTURE 7
FOR AND WHILE LOOPS

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Quiz 3 available

Projects 0 and 1 are out

Project 1 autograder to be opened soon

COMPARING SEQUENCES
We talked about comparison operators , , , .

In addition to comparing numbers, Python allows
comparison of sequences, e.g.

The two sequences must be of the same type.

> >= < <=

[1,2,3] > [1,1,8]

[9,8,7] < [9,8,7,6]

"McIntosh" > "Honeycrisp"

(4,) >= ()

Python uses lexicographical order for sequences, also
known as dictionary order.

To evaluate , line up corresponding elements:

...

...

Locate the �rst unequal pair, and compare using .

If we run out of elements of one sequence, consider the
shorter sequence to be less.

L < M

L[0] L[1] L[2]

M[0] M[1] M[2]

<

Code points compare according to number, which
means

Therefore:

"A" < "Z" < "a" < "z"

[1,2,3] > [1,1,8] # True

[9,8,7] < [9,8,7,6] # True

"McIntosh" > "Honeycrisp" # True

(4,) >= () # True

WHILE LOOPS
The syntax

will repeatedly do the following:

1. Evaluate condition; if False, skip the rest of this list
and move on. Otherwise,

2. Execute the statements in the block.
3. Return to the �rst step.

Called a loop because it returns to a previous line.

while condition:

 statement

 statement

The code block following a while is called the body of
the loop.

Most while loops will change a variable in the body,
affecting the condition.

This prints the numbers from 1 to 10.

n = 1

while n <= 10:

 print(n)

 n = n + 1

FOR LOOPS
The syntax

can be used with any sequence as the container.

It will assign the name to one of the elements of
container and run the loop body, repeating until each
element of container has been used exactly once.

for name in container:

 statement

 statement

Example:

Output:

for c in "MCS 260":

 if c == " ":

 print("space")

 elif c in "0123456789":

 print("digit")

 else:

 print("letter? (non-digit non-space)")

letter? (non-digit non-space)

letter? (non-digit non-space)

letter? (non-digit non-space)

space

digit

digit

digit

EXITING A LOOP
Both types of loops (for, while) have a way of ending
"normally".

Sometimes it is helpful to exit the loop early, or from
the middle of the body.

The break keyword does this. It applies to the
innermost loop containing it.

n=1

while True:

 n = n + 1

 if n > 9:

 break

print(n)

RANGE
Other containers are allowed in for loops.

There are some that generate the items one by one,
rather than computing everything in advance, e.g.

 generates the integers from to .

We will talk more about generators in the future. For
now, why use them?

range(N) 0 N − 1

for n in range(10):

 print(n+1)

The following is slow, as it creates a list of 50 million
items:

Better way:

This is very fast (only 102 items generated).

L = list(range(50_000_000))

for x in L:

 # do stuff with x

 # possibly exit the loop early

for x in range(50_000_000):

 print(x)

 if x > 100:

 break

ENUMERATED ITERATION
What if you need the index during iteration?

This method works, but is not recommended:
L = [9,8,2,4,1,1,5]

for i in range(len(L)):

 print("At index",i,"we have item",L[i])

Another way:

Use an extra index variable, increment it manually.
L = [9,8,2,4,1,1,5]

i = 0

for x in L:

 print("At index",i,"we have item",x)

 i = i + 1

Best way:

Use the function. It turns a sequence
like into an enumerated sequence

.

enumerate()
[7,6,5]

[(0,7), (1,6), (2,5)]

L = [9,8,2,4,1,1,5]

for i,x in enumerate(L):

 print("At index",i,"we have item",x)

AVOID RANGE(LEN())
When you see

in Python code, it should usually be replaced with

or

for i in range(len(L)): # not recommended!

 # do stuff with L[i]

for x in L:

 # do stuff with x

for i,x in enumerate(L):

 # do stuff with x and/or i

For and while loops allow you to write programs that
process a collection of data / events / etc.

If/elif/else allow processing to be customized to the
data.

Together these constructs give a lot of control over
program execution.

Example: , one-digit calculator. Usage:simplecalc.py
$ python simplecalc.py

> add 2 5

7

> sub 8 3

5

> mul 7 6

42

> div 7 2

3.5

> exp 2 5

32

> exit

$

https://dumas.io/teaching/2020/fall/mcs260/samplecode/simplecalc.py

Example: , one-digit calculator. Code:simplecalc.py
while True:

 s = input("> ")

 if s == "exit":

 break

 cmd = s[:3] # 3 char command

 x = int(s[4]) # 1 digit operand

 y = int(s[6]) # 1 digit operand

 if cmd == "add":

 print(x+y)

 elif cmd == "sub":

 print(x-y)

 elif cmd == "mul":

 print(x*y)

 elif cmd == "div":

 print(x/y)

 elif cmd == "exp":

 print(x**y)

 else:

 print("ERROR: Unknown command",cmd)

https://dumas.io/teaching/2020/fall/mcs260/samplecode/simplecalc.py

Example: . Code:rot13.py
clear = "abcdefghijklmnopqrstuvwxyz "

cipher = "nopqrstuvwxyzabcdefghijklm "

intext = input("Message: ")

outtext = ""

for c in intext:

 for i,d in enumerate(clear):

 if c == d:

 outtext = outtext + cipher[i]

 break # exits the inner for loop

print("Encoded:",outtext)

https://dumas.io/teaching/2020/fall/mcs260/samplecode/rot13.py

Example: . Usage:rot13.py
$ python rot13.py

Message: hello world

Encoded: uryyb jbeyq

$ python rot13.py

Message: uryyb jbeyq

Encoded: hello world

https://dumas.io/teaching/2020/fall/mcs260/samplecode/rot13.py

REFERENCES
In :

 is devoted to a detailed discussion of loops
 and contain additional examples of for loops.

REVISION HISTORY
2020-09-09 Correct iteration count in break example
2020-09-08 Initial publication

Downey
Chapter 7
Section 8.3 Section 10.3

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2008.html
http://greenteapress.com/thinkpython2/html/thinkpython2009.html#sec94
http://greenteapress.com/thinkpython2/html/thinkpython2011.html#sec116

