
LECTURE 6
CONDITIONALS & BOOLEAN ALGEBRA

MCS 260 Fall 2020
Emily Dumas

REMINDERS
No class Monday (Labor day)

Quiz 2 due 6pm central on Tue Sep 8

Project 1 description will be posted today

Project 1 due Fri Sep 18

A TRICKY LIST
What do you expect this code to do?

Will it produce an error?
L = ["a","b","c"]

L[0] = L

print(L)

CONDITIONALS
You can indicate that a section of code should only
execute if certain conditions are met.

Syntax:

Indenting statements below by the same amount
makes them a code block. The block ends when a line is
vertically aligned with .

if condition:

 statement

 statement

 ...

statement that runs regardless of the condition

if

if

In many other languages, special symbols are used to
indicate the start and end of a block, and indenting is
ignored.

 and are common choices.

Python uses indenting as a substitute for block start /
block end symbols.

{ }

This example uses four spaces to indent. That is the
recommended (and most popular) number.

n = int(input("How many penguins live with you? "))

if n > 150:

 print("That's quite a crowd!")

print("Thank you for completing the penguin census.")

SPACES VS TABS
The code point is "CHARACTER TABULATION",
better known as "tab".

Python allows this character to be used for indenting,
but recommends against it, and forbids mixing spaces
and tabs.

Depending on your editor, pressing the Tab key may:

Insert a fixed number of spaces
Insert a context-dependent number of spaces
Insert

U+0009

U+0009

Recommendation for Python coding:

Configure your editor to never insert .

This is often the default behavior.

U+0009

CONDITIONS
Python supports a lot of conditions (tests) that can
appear in an statement, e.g. comparison operators:

is greater than

is less than

is equal to
note two equal signs!

is not equal to

is greater than or
equal to

is less than or equal
to

if

>

<

==

!=

>=

<=

ELSE
An statement can be followed by and a code
block to be executed if the condition is False.

This is useful for handling dichotomies.

if else:

if x == 100:

 print("x is equal to 100")

else:

 print("x is NOT equal to 100")

ELIF
An statement can also be followed by (for
"else if"), which begins a new conditional.

A chain of is the typical way to
compare a variable to multiple values or categories.

if elif

if x == 100:

 print("x is equal to 100")

elif x % 4 == 0:

 print("x is a multiple of 4, but is not equal to 100")

elif x % 2 == 0:

 print("x is even, but is not a multiple of 4")

else:

 print("x is odd")

if/elif/elif/. . .

Example: quadroots.py
Determine the number of real roots of a quadratic polynomial

MCS 260 Fall 2020 Lecture 6 - Emily Dumas

print("Enter the coefficients a,b,c of ax^2+bx+c, one per line.")

a = float(input())

b = float(input())

c = float(input())

print("You entered:",a,"x^2 +",b,"x +",c)

discriminant = b**2 - 4*a*c

if discriminant > 0:

 print("This polynomial has two real roots.")

elif discriminant == 0:

 print("This polynomial has exactly one real root.")

else:

 # Now we know discriminant < 0

 print("This polynomial doesn't have any real roots.")

https://dumas.io/teaching/2020/fall/mcs260/samplecode/quadroots.py

MORE CONDITIONS
Sequence contains an
item equal to

(negation of above)

Both and are
True.

At least one of and
 is True.

 is False.

x in seq seq
x

x not in seq

con and cond0 d1 cond0 cond1

con or cond0 d1 cond0

cond1

 not cond cond

PRECEDENCE
Comparison operators all have lower precedence than
arithmetic, so e.g. evaluates as True. The
order is:

1. Arithmetic (PEMDAS)
2.
3.
4.
5.

5*5>30-10

>, >=, <, <=

==, !=

in, not in

and, or, not

BOOL
, for "boolean", is a type that has only two possible

values, and .

Conditions in or actually evaluate as s,
and you can have variables, too.

bool

True False

if elif bool

bool

everything_will_be_ok = True

missed_quiz_deadline = False

x = 1 < 2 # x is now True

y = 3 > 4 # y is now False

if x and not y:

 print("Good news: math is not broken.")

BOOLEAN ALGEBRA
Booleans are also considered in math / theoretical CS.

Different symbols are often used for boolean operators:

means and

means or

means not

In addition, or are sometimes used for .

x ∧ y x y

x ∨ y x y

¬x x

x̄ !x ¬x

The operators and are commutative and
associative. They obey algebraic rules such as:

 and
,
, ,

, .
Distributive law:

DeMorgan's law:
,

∧ ∨

¬(¬x) = x

x ∨ x = x x ∧ x = x
x ∨ (¬x) = True x ∧ (¬x) = False

x ∨ True = True x ∨ False = x
x ∧ False = False x ∧ True = x

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

¬(x ∧ y) = (¬x) ∨ (¬y)
¬(x ∨ y) = (¬x) ∧ (¬y)

Once you decode what these rules are saying, all but
the named ones will probably become obvious.

If I ever ask you to perform boolean algebra
simplification, I will provide this list.

These rules can be used to simplify boolean
expressions, e.g.

Math notation

DeMorgan

Distributive

x and not (x and y)

→ x ∧ ¬(x ∧ y)

→ x ∧ ((¬x) ∨ (¬y))

→ (x ∧ (¬x)) ∨ (x ∧ (¬y))

→ False ∨ (x ∧ (¬y))

→ x ∧ (¬y)

→ x and not y

BACK TO THE TRICKY LIST

What do you expect this code to do?

Will it produce an error?
L = ["a","b","c"]

L[0] = L

print(L)

Answer: No error. A list in Python can contain itself.

The " " is there so that the print function doesn't get
stuck constructing an infinite output!

>>> L = ["a","b","c"]

>>> L[0] = L

>>> print(L)

[[...], 'b', 'c']

>>> L[0] == L

True

...

REFERENCES
In :

REVISION HISTORY
2020-09-04 Typo fix
2020-09-04 Initial publication

Downey
Conditionals and booleans are discussed in sections 5.1 - 5.7.

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html

