
LECTURE 5
LISTS AND TUPLES

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Quiz 2 available, Due 6pm central on Tue Sep 8

Quiz 1 grades will be posted soon

MORE ON ASSIGNMENT
Recall that Python uses

as syntax for assignments. The right hand side is
evaluated first!

name = value or expression

>>> x = 5

>>> x

5

>>> x = x + 1

>>> x

6

LISTS
A list is a sequence of values (of any types).

Notice that the built-in supports lists.

>>> L = [4, "red", 2.2, [5,6]] # Square bracket = list

>>> L

[4, 'red', 2.2, [5, 6]]

>>> type(L)

<class 'list'>

>>> len(L)

4

len()

The empty list exists and is written .

 and operate similarly for lists as with strings.

Items can be retrieved by -based index:

[]

+ *

>>> [1,2,3] + [4,5,6]

[1, 2, 3, 4, 5, 6]

>>> [1,99]*3

[1, 99, 1, 99, 1, 99]

0

>>> L = [4,8,15,16,23,42]

>>> L[2]

15

MUTABILITY
Lists are mutable, meaning that the contents can be
changed.

An element of a list can be deleted with the del
keyword. Note the indices of other elements change.

>>> L = [4,8,15,16,23,42]

>>> L[2] = 999

>>> L

[4, 8, 999, 16, 23, 42]

>>> L = [4,8,15,16,23,42]

>>> del L[2]

>>> L

[4, 8, 16, 23, 42]

You can't access or assign list indices that don't exist:

One way to add a new element to a list would be:

(Later we'll learn a faster way to do this.)

>>> L = [4,8,15,16,23,42]

>>> L[6]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> L[6] = 121

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list assignment index out of range

>>> L = L + [121]

>>> L

[4, 8, 15, 16, 23, 42, 121]

STRINGS ARE IMMUTABLE
In Python, strings are immutable. The characters can
be accessed, but not changed.

>>> s = "it"

>>> s[1]

't'

>>> s[1] = "n"

Traceback (most recent call last):F

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

TUPLES
A tuple is a sequence of values (of any types). Like
strings, tuples are immutable.

Tuples are entered as values separated by commas.
Traditionally they are surrounded by parentheses, but
this is not required. They support indexing and .len()

>>> T = (2,6,"zero") # T = 2,6,"zero" also allowed

>>> T

(2, 6, 'zero')

>>> type(T)

<class 'tuple'>

>>> T[1]

6

>>> len(T)

3

A tuple with one element requires a trailing comma to
distinguish it from an expression in grouping
parentheses.

The empty tuple exists and can be written as or
.

>>> T = (1)

>>> type(T)

<class 'int'>

>>> T = (1,)

>>> type(T)

<class 'tuple'>

()
tuple()

SEQUENCES
Strings, lists, and tuples are all examples of Python
sequences: ordered collections of elements that can
be retrieved by index.

They all support .

>>> "asdf"[2] # string indexing

'd'

>>> [1,2,3,4][2] # list indexing

3

>>> (1,2,3,4)[2] # tuple indexing

3

len()

NEGATIVE INDICES
Sequences allow negative indices, where refers to
the last element, to the second to last, etc.

Can think of this as "wrap-around" behavior, with
negative index meaning move to the le�.

Negative indices (etc.) mean use of is rare.

−1
−2

>>> "Oklahoma!"[-1]

'!'

>>> "Oklahoma!"[-3]

'm'

len()

SLICES
Sequences in Python support slices to retrieve (or
assign) a segment.

The basic slice syntax is

which retrieves elements of with -based indices
between and , including but not .

Either or can be omitted; missing is taken to be ,
missing is taken to be just past the end.

x[i:j]

x 0
i j i j

i j i 0
j

l e a r n i n g P y t h o n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

>>> s = "learning Python"

>>> s[:]

'learning Python'

>>> s[:-1]

'learning Pytho'

>>> s[1:4]

'ear'

>>> s[:5]

'learn'

>>> s[5:]

'ing Python'

SEQUENCE CONVERSION
The functions and convert other
sequence types to list or tuple (resp.).

Careful: exists but doesn't convert a sequence
to a string in the corresponding way.

list() tuple()

>>> list("abc")

['a', 'b', 'c']

>>> tuple([1,2,3])

(1, 2, 3)

>>> tuple("abc")

('a', 'b', 'c')

str()

SEQUENCE ASSIGNMENT
Python supports multiple variable assignments in one
statement, with syntaxes:

The number of elements of sequence must match
the number of names given. As usual, the right hand
side is evaluated before assignment proceeds.

name0, name1, ..., nameN

(name0, name1, ..., nameN)

[name0, name1, ..., nameN]

= SEQ

= SEQ

= SEQ

SEQ

Swap two values:

Not equivalent to two separate assignments:

>>> x=1

>>> y=8

>>> x,y = y,x

>>> x

8

>>> y

1

>>> x=1

>>> y=8

>>> x=y

>>> y=x

>>> x

8

>>> y

8

Python is relatively unusual among programming
languages for allowing this simple swap syntax.

In many other languages, an explicit temporary
variable is needed, e.g.

temp = x

x = y

y = temp

SLICE ASSIGNMENT
A slice of a mutable sequence (list) can be assigned to
another sequence, even one of different length.

The indicated slice is removed from the list and
replaced with the elements of the sequence on the
right hand side.

>>> L = [10,100,50,500]

>>> L[1:3]

[100, 50]

>>> L[1:3] = "math"

>>> L

[10, 'm', 'a', 't', 'h', 500]

REFERENCES
In :

Lists are covered in (includes more material than in today's lecture)
Tuples are covered in (includes more material than in today's lecture)

 discusses "tuple assignment", a particular example of the sequence
assignment syntax we discussed today.

REVISION HISTORY
2020-09-02 Typos fixed
2020-09-01 Initial publication

Downey
Chapter 10

Chapter 12
Section 12.2

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2011.html
http://greenteapress.com/thinkpython2/html/thinkpython2013.html
http://greenteapress.com/thinkpython2/html/thinkpython2013.html#sec142

