
LECTURE 42
LOCKING AND SYNCHRONIZATION

MCS 260 Fall 2020
Emily Dumas



REMINDERS
Project 4 is due Friday at 6pm central.

Worksheet 15 is available. It is the last worksheet.
There is no quiz on that material.

No TA or instructor of�ce hours in �nal exam week
(Dec 7-11).



THREADING
Today we'll talk more about multi-threaded
programming, which we introduced in .

Last time our threads coordinated using only the
queue.Queue class.

Today we'll discuss other methods for coordinating
multiple threads.

Lecture 39

https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture39.html


PROBLEM
In a multi-threaded program, you never know when the
switch to another thread will happen.

I.e. code in distinct threads has uncertain execution order.

Planning for all possible concurrent execution scenarios
is very hard!



WHAT NOT TO DO
Two threads share mutable variables without
attempting to coordinate their actions.

(This usually leads to bugs, e.g. thread switch during
update leads to incorrect action.)



WHAT TO DO
Use concurrency primitives provided by the OS or
language.

These are objects designed to be accessed by multiple
threads and behave in a predictable way.

Build on the behavior of primitives to ensure certain
operations happen in the required order, i.e. to achieve
synchronization.



LOCK
A lock or mutex represents a right of exclusive access.
(Think: checking a book out of the library.) In Python it
is provided by threading.Lock with methods:

.acquire() — obtain the access right; if another

thread has it, block (wait) until it is available
.release() — give up the access right; another

thread waiting in .acquire() will wake up

Typical use: Hold the lock while accessing shared
variables (i.e. acquire before, release after).



SIMPLE EXAMPLE
A program stores a number as both an integer (e.g. 5)
and a string ("�ve"), as values in a dictionary.

One thread prints these values on a regular basis.

The main thread updates the values, also on a regular
basis.



PROBLEM
Sometimes, the printing thread wakes up in the middle
of an update by the main thread and prints incorrect
information.



SOLUTION
Use a lock to ensure no other thread can access the
dictionary while it is being updated.



DEADLOCKS
What if thread 1 holds a lock that thread 2 is waiting for
and thread 2 holds a lock that thread 1 is waiting for?

Both threads stop inde�nitely. This is called a deadlock
and must be avoided.



EVENT
threading.Event provides a shared boolean.

Threads can modify it or wait for it to become True.

.wait() — pause until the variable becomes True

.set() — set the variable to True

.clear() — set the variable to False

.is_set() — immediately return the value

Typical use: A dedicated thread handles a speci�c type
of event. It waits (.wait()) until some other thread

signals the event has happened (.set()).



EXAMPLE
Suppose a worker thread handles a certain long-
running calculation that can't be interrupted.

The main thread often changes the input of that
calculation. Whenever possible, the calculation should
be run again using the latest input.

Note: This is like producer-consumer but where the
queue only holds one object (the one most recently
submitted).



TOA/TOU
In a multi-threaded program, be careful about checking
a shared variable, and later doing something that
depends on the value. The value could be changed by
another thread in between!

This type of bug is called time of access / time of use.

Holding a lock from access to use is the usual solution.



OTHER CONCURRENCY PRIMITIVES
We didn't cover:

Condition variables
Semaphores



REFERENCES
Python module documentation:

REVISION HISTORY
2020-12-01 Initial publication

threading

https://docs.python.org/3/library/threading.html



