
LECTURE 4
STRINGS AND INTEGERS

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Quiz 1 due today at 6pm Central

Excuse requests must be sent to TA before
deadline

Python 3 and editor working?

If not, tell me immediately

Worksheet 2 available, Quiz 2 will be posted soon

STORAGE UNITS
We've discussed the bit (b), a binary digit (0 or 1).

A byte (B) is a sequence of 8 bits, equivalently, an 8-
digit binary number or a 2-digit hex number. It can
represent an integer between 0= and 255= .

A word is a longer sequence of bits of a length fixed by
the hardware or operating system. Today, a word
usually means 16 bits = 2 bytes.

Computers store information as sequences of bytes.

0x00 0xff

Counting bytes to measure the size of data often leads
to large numbers.

Coarser units based on SI prefixes:

kilobyte (KB) = 1,000 bytes
megabyte (MB) = 1,000,000 bytes
gigabyte (GB) = 1,000,000,000 bytes

Based on powers of 2 (IEC system), useful in CS:
kibibyte (KiB) = bytes = 1024 bytes
mebibyte (MiB) = 1024 KiB = 1,048,576 bytes
gibibyte (GiB) = 1024 MiB = 1,073,741,824 bytes

210

Unfortunate current reality:

Occasionally, SI abbreviations are used for IEC units;
in Windows, "GB" means GiB.

Very often, IEC units are read aloud using SI names;
e.g. write 16GiB and read aloud as "16 gigabytes"

UNICODE
Basic problem: How to turn written language into a
sequence of bytes?

Unicode (1991) splits this into two steps:

Enumerate characters1 of most2 written languages;
these are code points

Specify a way of encoding each code point as a
sequence of bytes (not discussed today)

[1] There are also code points for many non-
character entities, such as an indicator of whether
the language is read left-to-right or right-to-left.

[2] Coverage is not perfect and the standard is
regularly revised, adding new code points. Unicode
13.0 was released in March 2020.

Every code point has a number (a positive integer
between 0 and 0x10ffff=1,114,111).

Code point numbers are always written followed
by hexadecimal digits.

A

ĉ

😒

The first 127 code points, U+0 to U+7F, include all the
printable characters on an "en-us" keyboard,
numbered exactly as in the older ASCII code (1969).

U+

U+41

U+109

U+1f612

STRINGS
In Python 3, a str is a sequence of code points.

A string literal is a way of writing a str in code.

Several syntaxes are supported:
'Hello world' # single quotes

"Hello world" # double quotes

multi-line string with triple single quote

'''This is a string

that contains line breaks'''

multi-line string with triple double quote

"""François: How is MCS 260?

Binali: It's going ok, I guess.

François: [shrugs]"""

ESCAPE SEQUENCES
The character has special meaning; it begins an
escape sequence, such as:

 - the newline character
 - a single quote
 - a double quote
 - a backslash

 - Code point
 - Code point

(There is a)

\

\n

\'

\"

\\

\u0107 U+107

\U0001f612 U+1f612

full list of escape sequences.

https://docs.python.org/3/reference/lexical_analysis.html#index-21

>>> print("I \"like\":\n\u0050\u0079\u0074\u0068\u006f\u006e")

I "like":

Python

>>>

OPERATIONS ON STRINGS
Most arithmetic operations forbid str operands.

 is allowed between two strings. It concatenates the
strings (meaning joins them).

 is allowed with a string and an int. It concatenates
copies of the string, where is the int argument.

+

* n

n

>>> "Hello" + " " + "world!"

'Hello world!'

>>> "Hello" - "llo"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str'

>>> "Ha" * 4

'HaHaHaHa'

>>> prefix = "Dr. "

>>> fullname = "Ramanujan"

>>> prefix+fullname

'Dr. Ramanujan'

LEN AND INDEXING
The built-in can be applied to a string to find
the length of the string (a nonnegative int):

A single character from a string can be extracted
using where is the -based index. So =first
character, =second, etc..

We'll say much more about indexing next time.

len()

>>> len("MCS 260")

7

s

s[i] i 0 0

1

>>> s = "lorem ipsum"

>>> s[2]

'r'

INT
When converting from a string, defaults to base

. But it supports other bases as well. The base is
given as the second argument of the function.

Notice that integer literal prefixes like , , etc. must
not be present here. The function works with
just digits.

int()

10

>>> int("1001",2)

9

>>> int("3e",16)

62

0b 0x

int()

However, if a base of is specified, then this signals
that the string should be read as a Python literal, i.e.
the base is determined by its prefix.

0

>>> int("0b1001",0)

9

>>> int("0x3e",0)

62

>>> int("77",0)

77

BITWISE OPERATORS
There are certain operators that only work on ints, and
which are based on the bits in the binary expression:

left
shift

right
shift

bitwise
AND

bitwise
OR

bitwise
XOR

<< >> & | ^

 moves the bits of left by positions.

 moves the bits of right by positions.
(This detroys the lowest bits of .)

Notice is equivalent to .

a << b a b

a >> b a b

b a

>>> 9 << 3 # 9 = 0b1001 becomes 0b1001000 = 72

72

>>> 7 << 1 # 7 = 0b111 becomes 0b1110 = 14

14

>>> 9 >> 2 # 9 = 0b1001 becomes 0b10

2

a << b a * 2**b

Bitwise AND compares corresponding bits, and the
output bit is if both input bits are :

1 0 0 1

0 1 0 1

AND: 0 0 0 1

1 1

>>> 9 & 5 # 9 = 0b1001, 5 = 0b0101

1

Bitwise OR is similar, but the output bit is if at least
one of the input bits is .

1 0 0 1

0 1 0 1

OR: 1 1 0 1

1

1

>>> 9 | 5 # 9 = 0b1001, 5 = 0b0101

13

Bitwise XOR makes the output bit if exactly one of
the input bits is .

1 0 0 1

0 1 0 1

XOR: 1 1 0 0

1

1

>>> 9 ^ 5 # 9 = 0b1001, 5 = 0b0101

12

LOGIC GATES
Circuits that perform logic operations on bits, logic
gates, are fundamental building blocks of computers.

Thus the Python operators , , , , are especially
low-level operations.

<< >> & | ^

 CC-BY-SA 3.0

This chip (or integrated circuit / IC) contains four AND
gates built from about transistors. The processor in
an iPhone 11 has about transistors.

74LS08PC photo by Trio3D

50

8,500,000,000

https://commons.wikimedia.org/wiki/File:Fairchild_Semiconductor_74LS08PC.png

REFERENCES
In : Strings are discussed in and

The int() feature of converting from strings in other bases is also discussed in the .
Bitwise operations and logic gates are discussed in sections 1.1 and 2.4 of .

REVISION HISTORY
2020-08-31 Typos fixed, explanation of bitwise operators slightly expanded.
2020-08-30 Initial publication

Downey Section 2.6 Chapter 8
Bitwise operations in the Python 3 documentation

Python 3 documentation
Brookshear & Brylow

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2003.html#sec21
http://greenteapress.com/thinkpython2/html/thinkpython2009.html
https://docs.python.org/3/library/stdtypes.html?highlight=bitwise#bitwise-operations-on-integer-types
https://docs.python.org/3/library/functions.html#int
https://www.pearson.com/us/higher-education/program/Brookshear-Computer-Science-An-Overview-13th-Edition/PGM1949505.html

